【題目】某工廠(chǎng)甲、乙兩車(chē)間接到加工一批零件的任務(wù),從開(kāi)始加工到完成這項(xiàng)任務(wù)共用了9天,乙車(chē)間在加工2天后停止加工,引入新設(shè)備后繼續(xù)加工,直到與甲車(chē)間同時(shí)完成這項(xiàng)任務(wù)為止,設(shè)甲、乙車(chē)間各自加工零件總數(shù)為y(件),與甲車(chē)間加工時(shí)間x(天),y與x之間的關(guān)系如圖(1)所示.由工廠(chǎng)統(tǒng)計(jì)數(shù)據(jù)可知,甲車(chē)間與乙車(chē)間加工零件總數(shù)之差z(件)與甲車(chē)間加工時(shí)間x(天)的關(guān)系如圖(2)所示.
(1)甲車(chē)間每天加工零件為_____件,圖中d值為_____.
(2)求出乙車(chē)間在引入新設(shè)備后加工零件的數(shù)量y與x之間的函數(shù)關(guān)系式.
(3)甲車(chē)間加工多長(zhǎng)時(shí)間時(shí),兩車(chē)間加工零件總數(shù)為1000件?
【答案】80 770
【解析】
(1)由圖象的信息解答即可;
(2)利用待定系數(shù)法確定解析式即可;
(3)根據(jù)題意列出方程解答即可.
(1)由圖象甲車(chē)間每小時(shí)加工零件個(gè)數(shù)為720÷9=80個(gè),
d=770,
故答案為:80,770
(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,
∴B(4,120),C(9,770)
設(shè)yBC=kx+b,過(guò)B、C,
∴,解得,
∴y=130x﹣400(4≤x≤9)
(3)由題意得:80x+130x﹣400=1000,
解得:x=
答:甲車(chē)間加工天時(shí),兩車(chē)間加工零件總數(shù)為1000件
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀以下材料:
對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Nplcr,1550﹣1617年),納皮爾發(fā)明對(duì)數(shù)是在指數(shù)書(shū)寫(xiě)方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Evlcr,1707﹣1783年)才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系.
對(duì)數(shù)的定義:一般地,若ax=N(a>0,a≠1),那么x叫做以a為底N的對(duì)數(shù),記作:x=logaN.比如指數(shù)式24=16可以轉(zhuǎn)化為4=log216,對(duì)數(shù)式2=log525可以轉(zhuǎn)化為52=25.
我們根據(jù)對(duì)數(shù)的定義可得到對(duì)數(shù)的一個(gè)性質(zhì):loga(MN)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:
設(shè)logaM=m,logaN=n,則M=am,N=an
∴MN=aman=am+n,由對(duì)數(shù)的定義得m+n=loga(MN)
又∵m+n=logaM+logaN
∴loga(MN)=logaM+logaN
解決以下問(wèn)題:
(1)將指數(shù)43=64轉(zhuǎn)化為對(duì)數(shù)式_____;
(2)證明loga=logaM﹣logaN(a>0,a≠1,M>0,N>0)
(3)拓展運(yùn)用:計(jì)算log32+log36﹣log34=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三角形BCO是三角形BAO經(jīng)過(guò)某種變換得到的.
(1)寫(xiě)出A,C的坐標(biāo);
(2)圖中A與C的坐標(biāo)之間的關(guān)系是什么?
(3)如果三角形AOB中任意一點(diǎn)M的坐標(biāo)為(x,y),那么它的對(duì)應(yīng)點(diǎn)N的坐標(biāo)是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABF中,以AB為直徑的圓分別交邊AF、BF于C、E兩點(diǎn),CD⊥AF.AC是∠DAB的平分線(xiàn),
(1)求證:直線(xiàn)CD是⊙O的切線(xiàn).
(2)求證:△FEC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠C=90°,AC=BC=4cm,D是AB的中點(diǎn),以C為圓心,4cm長(zhǎng)為半徑作圓,則A,B,C,D四點(diǎn)中,在圓內(nèi)的有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們學(xué)習(xí)了勾股定理后,都知道“勾三、股四、弦五”.
觀(guān)察:3、4、5;5、12、13;7、24、25;9、40、41;…,發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒(méi)有間斷過(guò).
(1)請(qǐng)你根據(jù)上述的規(guī)律寫(xiě)出下一組勾股數(shù):________.
(2)若第一個(gè)數(shù)用字母n(n為奇數(shù),且n≥3)表示,那么后兩個(gè)數(shù)用含n的代數(shù)式分別表示為________和________,請(qǐng)用所學(xué)知識(shí)說(shuō)明它們是一組勾股數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖△ABC是正三角形,曲線(xiàn)CDEF叫做“正三角形的漸開(kāi)線(xiàn)”,其中 、 、 圓心依次按A、B、C…循環(huán),它們依次相連接.若AB=1,則曲線(xiàn)CDEF長(zhǎng)是(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,AB=AC,BD、CD分別平分∠ABC和∠ACB.問(wèn):(答題時(shí),注意書(shū)寫(xiě)整潔)
(1)圖①中有幾個(gè)等腰三角形?(寫(xiě)出來(lái),不需要證明)
(2)過(guò)D點(diǎn)作EF∥BC,交AB于E,交AC于F,如圖②,圖中增加了幾個(gè)等腰三角形,選一個(gè)進(jìn)行證明.
(3)如圖③,若將題中的△ABC改為不等邊三角形,其他條件不變,圖中有幾個(gè)等腰三角形?線(xiàn)段EF與BE、CF有什么關(guān)系?(寫(xiě)出來(lái),不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是( )
①AD是∠BAC的平分線(xiàn) ②∠ADC=60°
③點(diǎn)D在A(yíng)B的垂直平分線(xiàn)上 ④AB=2AC.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com