【題目】如圖,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,若AE⊥BC,∠ADC=65°,則∠ABC的度數(shù)為( )

A.30°
B.40°
C.50°
D.60°

【答案】B
【解析】解:∵△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,
∴AD=AC,∠BAE=∠CAD,
∵AD=AC,
∴∠ACD=∠ADC=65°,
∴∠CAD=180°﹣65°﹣65°=50°,
∴∠BAE=50°,
∵AE⊥BC,
∴∠ABC=90°﹣∠BAE=40°.
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用圖形的旋轉(zhuǎn)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度,任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.旋轉(zhuǎn)的方向、角度、旋轉(zhuǎn)中心是它的三要素.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)平面內(nèi)一點(diǎn)到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R .對(duì)于一個(gè)點(diǎn)與等邊三角形,給出如下定義:滿足rdR的點(diǎn)叫做等邊三角形的中心關(guān)聯(lián)點(diǎn).在平面直角坐標(biāo)系xOy中,等邊△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,2),B(﹣,﹣1),C(,﹣1).

(1)已知點(diǎn)D(2,2),E,1),F,﹣1).在D,E,F中,是等邊△ABC的中心關(guān)聯(lián)點(diǎn)的是 ;

(2)如圖1,過(guò)點(diǎn)A作直線交x軸正半軸于M,使∠AMO=30°.

①若線段AM上存在等邊△ABC的中心關(guān)聯(lián)點(diǎn)Pm,n),求m的取值范圍;

②將直線AM向下平移得到直線y=kx+b,當(dāng)b滿足什么條件時(shí),直線y=kx+b總存在等邊△ABC的中心關(guān)聯(lián)點(diǎn);(直接寫(xiě)出答案,不需過(guò)程)

(3)如圖2,點(diǎn)Q為直線y=﹣1上一動(dòng)點(diǎn),⊙Q的半徑為.當(dāng)Q從點(diǎn)(﹣4,﹣1)出發(fā),以每秒1個(gè)單位的速度向右移動(dòng),運(yùn)動(dòng)時(shí)間為t秒.是否存在某一時(shí)刻t,使得⊙Q上所有點(diǎn)都是等邊△ABC的中心關(guān)聯(lián)點(diǎn)?如果存在,請(qǐng)直接寫(xiě)出所有符合題意的t的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由射線AB,BC,CD,DE,EA組成的平面圖形,則∠1+∠2+∠3+∠4+∠5=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果∠α=55.5°,∠β=55°5',那么∠α與∠β之同的大小關(guān)系是(

A. ∠α>∠β B. ∠α<∠β C. ∠α=∠β D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的方程(a+3)x|a|1﹣3x+2=0是一元二次方程,則a的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的面積為3cm2,E為BC邊上一點(diǎn),BAE=30°,F(xiàn)為AE的中點(diǎn),過(guò)點(diǎn)F作直線分別與AB,DC相交于點(diǎn)M,N.若MN=AE,則AM的長(zhǎng)等于 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC由△A′B′C′繞O點(diǎn)旋轉(zhuǎn)180°而得到,則下列結(jié)論不成立的是( )

A.點(diǎn)A與點(diǎn)A′是對(duì)應(yīng)點(diǎn)
B.BO=B′O
C.∠ACB=∠C′A′B′
D.AB∥A′B′

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點(diǎn)在相互平行的三條直線l1 , l2 , l3上,且l1 , l2之間的距離為2,l2 , l3之間的距離為3,則AC的長(zhǎng)是(
A.
B.
C.
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫(xiě)出一個(gè)兩根分別為02的一元二次方程:___

查看答案和解析>>

同步練習(xí)冊(cè)答案