【題目】函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:

①b2﹣4c>0;②b+c=0;③2b+c+3=0;④當(dāng)1<x<3時,x2+(b﹣1)x+c<0

其中正確的有(  )個

A. 4 B. 3 C. 2 D. 1

【答案】C

【解析】試題解析:①∵函數(shù)y=x2+bx+cx軸沒交點,

∴△=b2-4ac<0,

∵a=1,

∴△=b2-4c<0,

故①錯誤;

②∵函數(shù)y=x2+bx+cy=x的交點的橫坐標(biāo)為1,

∴交點為:(1,1),(3,3),

∴b+c+1=1,

∴b+c=0;

故②正確;

③由圖象得:拋物線的對稱軸是:x=,且a=1,

-=,

∴b=-3,

∴2b+c+3=b+0+3=0,

故③正確;

④由圖象可知:當(dāng)1<x<3時,拋物線在直線的下方,

∴x2+bx+c<x,

∴x2+(b-1)x+c<0,

故④正確.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為預(yù)防傳染病,某校定期對教室進行藥熏消毒.已知藥物燃燒階段,室內(nèi)每立方米空氣中的含藥量 與藥物在空氣中的持續(xù)時間成正比例;燃燒后,成反比例(如圖所示).現(xiàn)測得藥物分鐘燃完,此時教室內(nèi)每立方米空氣含藥量為.根據(jù)以上信息解答下列問題:

1)分別求出藥物燃燒時及燃燒后 關(guān)于的函數(shù)表達(dá)式.

2)當(dāng)每立方米空氣中的含藥量低于 時,對人體方能無毒害作用,那么從消毒開始,在哪個時段消毒人員不能停留在教室里?

3)當(dāng)室內(nèi)空氣中的含藥量每立方米不低于 的持續(xù)時間超過分鐘,才能有效殺滅某種傳染病毒.試判斷此次消毒是否有效,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,搭一個正方形需要4根火柴棒,搭2個正方形需要7根火柴棒,搭3個正方形需要10根火柴棒.

……

(1)若搭5個這樣的正方形,這需要 根火柴棒;

(2)若搭n個這樣的正方形,這需要 根火柴棒;

(3)若現(xiàn)在有2018根火柴棒,要搭700個這樣的正方形,至少還需要火柴多少根?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題

已知張強家.體育場.文具店在同一直線上.下面的圖象反映的過程是:張強從家跑步去體育場,在那里鍛煉了一陣后又走到文具店去買筆,然后散步走回家.圖中x表示時間,y表示張強離家的距離.據(jù)圖象回答下列問題:

1)體育場離張強家多遠(yuǎn)?張強從家到體育場用了多少時間?

2)張強在文具店停留了多少時間?

3)張強從文具店回家平均每分鐘走多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是某水庫一周內(nèi)水位高低的變化情況(用正數(shù)記水位比前一日上升數(shù),用負(fù)數(shù)記下降數(shù)).那么本周星期幾水位最低

A. 星期二B. 星期四C. 星期六D. 星期五

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)小My同學(xué)在網(wǎng)絡(luò)直播課中學(xué)習(xí)了勾股定理,他想把這一知識應(yīng)用在等邊三角形中:邊長為a的等邊三角形面積是   (用含a的代數(shù)式表示);

2)小My同學(xué)進一步思考:是否可以將正方形剪拼成一個等邊三角形(不重疊、無縫隙)?

如果將一個邊長為2的正方形紙片剪拼等邊三角形,那么該三角形邊長的平方是   ;

My同學(xué)按下圖切割方法將正方形ABCD剪拼成一個等邊三角形EFGM、N分別為ABCD邊上的中點,P、Q是邊BC、AD上兩點,GMQ上一點,且∠MGP=∠PGN=∠NGQ60°.

請補全圖形,畫出拼成正三角形的各部分分割線,并標(biāo)號;

正方形ABCD的邊長為2,設(shè)BPx,則x2   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標(biāo)為(﹣1,0),點C(0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.

(1)求拋物線的解析式;

(2)求MCB的面積SMCB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓O的直徑,AD、BC分別切⊙OAB兩點,CD切⊙O于點E,ADCD相交于DBCCD相交于C,連結(jié)OD、OE、OC,對于下列結(jié)論:

AD+BC=CD②∠DOC=90°;S梯形ABCD=CDOA

其中結(jié)論正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,把ABCAC邊的中點M旋轉(zhuǎn)后得DEF,若直角頂點F恰好落在AB邊上,且DE邊交AB邊于點G,若AC=4,BC=3,則AG的長為(  )

A.B.C.D.1

查看答案和解析>>

同步練習(xí)冊答案