【題目】我縣壽源壹號樓盤準備以每平方米元均價對外銷售,由于國務(wù)院有關(guān)房地產(chǎn)的新政策出臺,購房者持幣觀望,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),對價格進行兩次下調(diào)后,決定以每平方米元的均價開盤銷售.
(1)求平均每次下調(diào)的百分率.
(2)某人準備以開盤均價購買一套平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案供選擇:
①打折銷售;
②不打折,一次性送裝修費每平方米元.
試問哪種方案更優(yōu)惠?
【答案】(1)10%;(2)選擇方案①更優(yōu)惠.
【解析】
(1)此題可以通過設(shè)出平均每次下調(diào)的百分率為,根據(jù)等量關(guān)系“起初每平米的均價下調(diào)百分率)下調(diào)百分率)兩次下調(diào)后的均價”,列出一元二次方程求出.
(2)對于方案的確定,可以通過比較兩種方案得出的費用:①方案:下調(diào)后的均價兩年物業(yè)管理費②方案:下調(diào)后的均價,比較確定出更優(yōu)惠的方案.
解:(1)設(shè)平均每次降價的百分率是,依題意得
,
解得:,(不合題意,舍去).
答:平均每次降價的百分率為.
(2)方案①購房優(yōu)惠:4050×120×(1-0.98)=9720(元)
方案②購房優(yōu)惠:70×120=8400(元)
9720(元)>8400(元)
答:選擇方案①更優(yōu)惠.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,有三個小正方形已經(jīng)涂成灰色,若再任意涂灰2個白色小正方形(每個白色小正方形被涂成灰色的可能性相同),使新構(gòu)成灰色部分的圖形是軸對稱圖形的概率是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線y=x+4與拋物線y=﹣x2+bx+c(b,c是常數(shù))交于A、B兩點,點A在x軸上,點B在y軸上.設(shè)拋物線與x軸的另一個交點為點C.
(1)求該拋物線的解析式;
(2)P是拋物線上一動點(不與點A、B重合),
①如圖2,若點P在直線AB上方,連接OP交AB于點D,求的最大值;
②如圖3,若點P在x軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點P的運動,正方形的大小、位置也隨之改變.當頂點E或F恰好落在y軸上,直接寫出對應的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點A,沿順時針方向旋轉(zhuǎn)后得到Rt△AB1C1,當點B1恰好落在斜邊BC的中點時,則∠B1AC=( )
A.25°B.30°C.40°D.60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】同時拋擲兩枚質(zhì)地均勻的正四面體骰子,骰子各個面的點數(shù)分別是1至4的整數(shù),把這兩枚骰子向下的面的點數(shù)記為(a,b),其中第一枚骰子的點數(shù)記為a,第二枚骰子的點數(shù)記為b.
(1)用列舉法或樹狀圖法求(a,b)的結(jié)果有多少種?
(2)求方程x2+bx+a=0有實數(shù)解的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有七張正面標有數(shù)字﹣3,﹣2,﹣1,0,1,2,3的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗均后從中隨機抽取一張,記卡片上的數(shù)字為a,則使關(guān)于x的一元二次方程ax2﹣(2a﹣1)x+a﹣2=0有兩個不相等的實數(shù)根,且分式方程的解為正數(shù)的概率為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.
請你根據(jù)統(tǒng)計圖解答下列問題:
(1)參加比賽的學生共有____名;
(2)在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;
(3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結(jié)BD、DP,BD與CF相交于點H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③DP2=PHPC;④FE:BC=,其中正確的個數(shù)為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的圓O交BC于點D,交AC于點E,過點D作DF⊥AC于點F,交AB的延長線于點G.
(1)求證:DF是⊙O的切線;
(2)已知BD=,CF=2,求DF和BG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com