【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點(diǎn),且 = ,連接CF并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)E,連接AC.若∠ABC=110°,∠BAC=20°,則∠E的度數(shù)為(
A.60°
B.55°
C.50°
D.45°

【答案】C
【解析】解:∵四邊形ABCD內(nèi)接于⊙O,∠ABC=105°, ∴∠ADC=180°﹣∠ABC=180°﹣110°=70°.
∵且 = ,∠BAC=20°,
∴∠DCE=∠BAC=20°,
∴∠E=∠ADC﹣∠DCE=70°﹣20°=50°.
故選C.
【考點(diǎn)精析】利用圓心角、弧、弦的關(guān)系和圓內(nèi)接四邊形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等;在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;把圓分成n(n≥3):1、依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形2、經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校興趣小組對(duì)網(wǎng)上吐糟較為頻繁的“醫(yī)患關(guān)系”產(chǎn)生了興趣,利用節(jié)假日在某社區(qū)開(kāi)展了“造成醫(yī)患關(guān)系緊張的原因”的問(wèn)卷調(diào)查.

造成醫(yī)患關(guān)系緊張的原因(單選)
A.藥價(jià)高
B.檢測(cè)項(xiàng)目太多且收費(fèi)太高
C.住院報(bào)銷(xiāo)比例低
D.醫(yī)療費(fèi)與個(gè)人收入不相稱
E.其他

根據(jù)調(diào)查結(jié)果繪制出了如下兩幅尚不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息解答下列問(wèn)題:
(1)這次接受調(diào)查的總?cè)藬?shù)為人;
(2)在扇形統(tǒng)計(jì)圖中,“A”所在扇形的圓心角的度數(shù)為;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市有1000萬(wàn)人,請(qǐng)你估計(jì)選D的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,科技小組準(zhǔn)備用材料圍建一個(gè)面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長(zhǎng)為12m。設(shè)AD的長(zhǎng)為xm,DC的長(zhǎng)為ym。

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若圍成矩形科技園ABCD的三邊材料總長(zhǎng)不超過(guò)26m,材料AD和DC的長(zhǎng)都是米數(shù),求出滿足條件的所有圍建方案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在平行四邊形ABCD中,AC、BD相交于O點(diǎn),點(diǎn)E、F分別為BO、DO的中點(diǎn),連接AF,CE.

(1)求證:四邊形AECF是平行四邊形;
(2)如果E,F(xiàn)點(diǎn)分別在DB和BD的延長(zhǎng)線上時(shí),且滿足BE=DF,上述結(jié)論仍然成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點(diǎn),且 = ,連接CF并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)E,連接AC,若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為(
A.45°
B.50°
C.55°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,點(diǎn)OAC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MNBC,設(shè)MNBCA的外角平分線CF于點(diǎn)FACB內(nèi)角平分線CEE

1求證:EO=FO;

2當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論;

3AC邊上存在點(diǎn)O,使四邊形AECF是正方形,猜想ABC的形狀并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AD=2,把邊BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°得到線段BP,連接AP并延長(zhǎng)交CD于點(diǎn)E,連接PC,則三角形PCE的面積為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知Rt△MBN的兩條直角邊與正方形ABCD的兩鄰邊重合,∠M=30°,OAB中點(diǎn),NO平分∠BNM,EO平分∠AEN

(1)求證:△MON為等腰三角形;

(2)求證:ENAE+BN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo).經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天;若由甲隊(duì)先做20天,剩下的工程由甲、乙合做24天可完成.

(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?

(2)甲隊(duì)施工一天,需付工程款3.5萬(wàn)元,乙隊(duì)施工一天需付工程款2萬(wàn)元.若該工程計(jì)劃在70天內(nèi)完成,在不超過(guò)計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成該工程省錢(qián)?還是由甲乙兩隊(duì)全程合作完成該工程省錢(qián)?

查看答案和解析>>

同步練習(xí)冊(cè)答案