【題目】如圖,AB是圓O的直徑,弦CD⊥AB,∠BCD=30°,CD=4 ,則S陰影=( )
A.2π
B. π
C. π
D. π
【答案】B
【解析】解:如圖,假設(shè)線段CD、AB交于點(diǎn)E, ∵AB是⊙O的直徑,弦CD⊥AB,
∴CE=ED=2 ,
又∵∠BCD=30°,
∴∠DOE=2∠BCD=60°,∠ODE=30°,
∴OE=DEcot60°=2 × =2,OD=2OE=4,
∴S陰影=S扇形ODB﹣S△DOE+S△BEC= ﹣ OE×DE+ BECE= ﹣2 +2 = .
故選B.
根據(jù)垂徑定理求得CE=ED=2 ,然后由圓周角定理知∠DOE=60°,然后通過解直角三角形求得線段OD、OE的長(zhǎng)度,最后將相關(guān)線段的長(zhǎng)度代入S陰影=S扇形ODB﹣S△DOE+S△BEC .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家到圖書館看報(bào)然后返回,他離家的距離y與離家的時(shí)間x之間的對(duì)應(yīng)關(guān)系如圖所示,如果小明在圖書館看報(bào)30分鐘,那么他離家50分鐘時(shí)離家的距離為km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AD=4cm,把紙片沿直線AC折疊,點(diǎn)B落在E處,AE交DC于點(diǎn)O,若AO=5cm,則AB的長(zhǎng)為( )
A.6cm
B.7cm
C.8cm
D.9cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一點(diǎn),直線BP與y軸相交于點(diǎn)C.
(1)求拋物線y=﹣x2+ax+b的解析式;
(2)當(dāng)點(diǎn)P是線段BC的中點(diǎn)時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,求sin∠OCB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y= 的圖象交于第一象限內(nèi)的P( ,8),Q(4,m)兩點(diǎn),與x軸交于A點(diǎn).
(1)分別求出這兩個(gè)函數(shù)的表達(dá)式;
(2)寫出點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P'的坐標(biāo);
(3)求∠P'AO的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題
(1)計(jì)算:﹣14+ sin60°+( )﹣2﹣(π﹣ )0
(2)先化簡(jiǎn),再求值:(1﹣ )÷ ,其中x= ﹣1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中xOy中,拋物線y=ax2﹣2ax﹣3a(a<0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),經(jīng)過點(diǎn)A的直線l:y=kx+b與y軸負(fù)半軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D,且CD=4AC.
(1)求A、B兩點(diǎn)的坐標(biāo)及拋物線的對(duì)稱軸;
(2)求直線l的函數(shù)表達(dá)式(其中k、b用含a的式子表示);
(3)點(diǎn)E是直線l上方的拋物線上的動(dòng)點(diǎn),若△ACE的面積的最大值為 ,求a的值;
(4)設(shè)P是拋物線對(duì)稱軸上的一點(diǎn),點(diǎn)Q在拋物線上,以點(diǎn)A、D、P、Q為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡(jiǎn),再求代數(shù)式的值:( ﹣ )÷ ,其中sin230°<a<tan260°,請(qǐng)你取一個(gè)合適的整數(shù)作為a的值代入求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=4,S△ABC=4 ,點(diǎn)P、Q、K分別為線段AB、BC、AC上任意一點(diǎn),則PK+QK的最小值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com