【題目】如圖,長(zhǎng)方形ABCD中,AB=4cm,BC=3cm,E為CD的中點(diǎn).動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒1cm的速度沿A﹣B﹣C﹣E運(yùn)動(dòng),最終到達(dá)點(diǎn)E.若點(diǎn)P運(yùn)動(dòng)的時(shí)間為x秒,則當(dāng)x=_____時(shí),△APE的面積等于5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是
A. 擲一枚均勻的骰子,骰子停止轉(zhuǎn)動(dòng)后,6點(diǎn)朝上是必然事件
B. 甲、乙兩人在相同條件下各射擊10次,他們的成績(jī)平均數(shù)相同,方差分別是,,則甲的射擊成績(jī)較穩(wěn)定
C. “明天降雨的概率為”,表示明天有半天都在降雨
D. 了解一批電視機(jī)的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2;
(1)求反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象直接寫(xiě)出﹣x>的解集;
(3)將直線l1:y=- x沿y向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著柴靜紀(jì)錄片《穹頂之下》的播出,全社會(huì)對(duì)空氣污染問(wèn)題越來(lái)越重視,空氣凈化器的銷(xiāo)量也大增,商社電器從廠家購(gòu)進(jìn)了A,B兩種型號(hào)的空氣凈化器,已知一臺(tái)A型空氣凈化器的進(jìn)價(jià)比一臺(tái)B型空氣凈化器的進(jìn)價(jià)多300元,用7500元購(gòu)進(jìn)A型空氣凈化器和用6000元購(gòu)進(jìn)B型空氣凈化器的臺(tái)數(shù)相同.
(1)求一臺(tái)A型空氣凈化器和一臺(tái)B型空氣凈化器的進(jìn)價(jià)各為多少元?
(2)在銷(xiāo)售過(guò)程中,A型空氣凈化器因?yàn)閮艋芰?qiáng),噪音小而更受消費(fèi)者的歡迎.為了增大B型空氣凈化器的銷(xiāo)量,商社電器決定對(duì)B型空氣凈化器進(jìn)行降價(jià)銷(xiāo)售,經(jīng)市場(chǎng)調(diào)查,當(dāng)B型空氣凈化器的售價(jià)為1800元時(shí),每天可賣(mài)出4臺(tái),在此基礎(chǔ)上,售價(jià)每降低50元,每天將多售出1臺(tái),如果每天商社電器銷(xiāo)售B型空氣凈化器的利潤(rùn)為3200元,請(qǐng)問(wèn)商社電器應(yīng)將B型空氣凈化器的售價(jià)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 xOy 中,已知正比例函數(shù) y1=﹣2x 的圖象與反比例函數(shù) y2=的圖象交于 A(﹣1,a),B 兩點(diǎn).
(1)求出反比例函數(shù)的解析式及點(diǎn) B 的坐標(biāo);
(2)觀察圖象,請(qǐng)直接寫(xiě)出滿足 y≤2 的取值范圍;
(3)點(diǎn) P 是第四象限內(nèi)反比例函數(shù)的圖象上一點(diǎn),若△POB 的面積為 1,請(qǐng)直接寫(xiě)出點(diǎn) P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,正方形OABC的點(diǎn)A在軸上,點(diǎn)C在軸上,點(diǎn)B(4,4),點(diǎn)E在BC邊上.將△ABE繞點(diǎn)A 順時(shí)針旋轉(zhuǎn)90°,得△AOF,連接EF交軸于點(diǎn)D.
(Ⅰ)若點(diǎn)E的坐標(biāo)為(,).求
(1)線段EF的長(zhǎng);
(2)點(diǎn)D的坐標(biāo);
(Ⅱ)設(shè)點(diǎn)E(,),,試用含的式子表示,并求出使取得最大值時(shí)點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,⊙O的半徑為4,點(diǎn)A是⊙O上一點(diǎn),直線l過(guò)點(diǎn)A;P是⊙O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),過(guò)點(diǎn)P作PB⊥l于點(diǎn)B,交⊙O于點(diǎn)E,直徑PD延長(zhǎng)線交直線l于點(diǎn)F,點(diǎn)A是的中點(diǎn).
(1)求證:直線l是⊙O的切線;
(2)若PA=6,求PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com