【題目】如圖,將ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.
(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE,求證:四邊形ABEC是矩形.
【答案】證明:(1)見解析
(2)見解析
【解析】
證明:(1)∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD.∴∠ABF=∠ECF.
∵EC=DC,∴AB=EC.
在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,
∴△ABF≌△ECF.
(2)證法一:由(1)知AB=EC,又AB∥EC,∴四邊形ABEC是平行四邊形.∴AF=EF,BF=CF.
∵四邊形ABCD是平行四邊形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC.
∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF.∴FA=FB.
∴FA=FE=FB=FC,∴AE=BC.∴□ABEC是矩形.
證法二:由(1)知AB=EC,又AB∥EC,∴四邊形ABEC是平行四邊形.
∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠D=∠BCE.
又∵∠AFC=2∠D,∴∠AFC=2∠BCE.
∵∠AFC=∠FCE+∠FEC,∴∠FCE=∠FEC.∴∠D=∠FEC.
∴AE=AD.
又∵CE=DC,∴AC⊥DE,即∠ACE=90°.
∴□ABEC是矩形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖各圖是棱長為1cm的小正方體擺成的,如圖①中,從正面看有1個正方形,表面積為6cm2;如圖②中,從正面看有3個正方形,表面積為18cm2;如圖③,從正面看有6個正方形,表面積為36cm2;…
(1)第6個圖中,從正面看有多少個正方形?表面積是多少?
(2)第n個圖形中,從正面看有多少個正方形?表面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為發(fā)展學生的核心素養(yǎng),培養(yǎng)學生的綜合能力,某學校計劃開設四門選修課:樂器、舞蹈、繪畫、書法.學校采取隨機抽樣的方法進行問卷調查(每個被調查的學生必須選擇而且只能選擇其中一門).對調查結果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給信息解答下列問題:
(1)本次調查的學生共有 人,在扇形統(tǒng)計圖中,m的值是 ;
(2)將條形統(tǒng)計圖補充完整;
(3)在被調查的學生中,選修書法的有2名女同學,其余為男同學,現(xiàn)要從中隨機抽取2名同學代表學校參加某社區(qū)組織的書法活動,請寫出所抽取的2名同學恰好是1名男同學和1名女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD中,點E在邊DC上,DE=2,EC=1(如圖所示)把線段AE繞點A旋轉,使點E落在直線BC上的點F處,則F、C兩點的距離為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOC是直角,OD平分∠AOC,∠BOC=60° 求:
(1)∠AOD的度數(shù);
(2)∠AOB的度數(shù);
(3)∠DOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A在x軸正半軸上,頂點C在y軸正半軸上,點B(8,6),將△OCE沿OE折疊,使點C恰好落在對角線OB上D處,則E點坐標為 ( )
A. (3,6) B. (,6) C. (,6) D. (1,6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段AB=30cm
(1)如圖1,點P沿線段AB自點A向點B以2cm/s的速度運動,同時點Q沿線段點B向點A以3cm/s的速度運動,幾秒鐘后,P、Q兩點相遇?
(2)如圖1,幾秒后,點P、Q兩點相距10cm?
(3)如圖2,AO=4cm,PO=2cm,當點P在AB的上方,且∠POB=60°時,點P繞著點O以30度/秒的速度在圓周上逆時針旋轉一周停止,同時點Q沿直線BA自B點向A點運動,假若點P、Q兩點能相遇,求點Q的運動速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的頂點A在坐標原點,頂點C在y軸上,OB=2。將矩形ABCD繞點O順時針旋轉60°,使點D落在x軸的點G處,得到矩形AEFG,EF與AD交于點M,過點M的反比例函數(shù)圖象交FG于點N,連接DN.
(1)求反比例函數(shù)的解析式
(2)求△AMN的面積;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三位老師周末到某家電專賣店購買冰箱和空調,正值該專賣店舉行“迎新春、大優(yōu)惠”活動,具體優(yōu)惠情況如下表:
購物總金額(原價) | 折扣率 |
不超過3000元的部分 | 九折 |
超過3000元但不超過5000元的部分 | 八折 |
超過5000元的部分 | 七折 |
(1)李老師所購物品的原價是6000元,李老師實際付 元
(2)已知張老師購買了兩件物品(一個冰箱和一個空調)共付費4060元.請問這兩件物品的原價總共是多少元?
(3)碰巧同一天趙老師也在同一家專賣店購買了同樣的兩件物品.但趙老師上午去購買的冰箱,下 午去購買的空調,如此一來趙老師兩次付款總額比張老師多花費了140元.已知此冰箱的原價比空調的原價要貴,求這兩件物品的原價分別為多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com