精英家教網 > 初中數學 > 題目詳情

【題目】已知拋物線yax2ax2aa為常數且不等于0)與x軸的交點為A,B兩點,且A點在B的右側.

1)當拋物線經過點(3,8),求a的值;

2)求AB兩點的坐標;

3)若拋物線的頂點為M,且點Mx軸的距離等于AB3倍,求拋物線的解析式.

【答案】(1)a=2;(2)A(2,0),B(﹣1,0);(3)拋物線為y=4x2﹣4x﹣8或y=﹣4x2+4x+8.

【解析】

(1)將點(3,8)代入已知函數解析式,列出關于a的方程8=a(9﹣3﹣2),通過解該方程求得a的值;

(2)根據二次函數與一元二次方程的關系可以得到ax2x﹣2)=0,a≠0,由此求得點A、B的橫坐標;

(3)利用(2)中點A、B的坐標求得AB=3,結合頂點坐標公式求得a的值

1)∵拋物線yax2ax﹣2a經過點(3,8),∴8=a(9﹣3﹣2),∴a=2;

(2)∵方程ax2x﹣2)=0,a≠0,∴x2x﹣2=0,解得x1=2,x2=﹣1,∴A(2,0),B(﹣1,0);

(3)∵拋物線∴頂點M的坐標為().

A(2,0),B(﹣1,0),∴AB=3,由題意得,∴a=±4,∴拋物線為y=4x2﹣4x﹣8y=﹣4x2+4x+8.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,折疊長方形的一邊AD,使點D落在BC邊上的點F處,BC=15AB=9.

求:(1)FC的長;(2)EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一塊直角三角板ABC中,C=90°,A=30°BC=1,將另一個含30°角的EDF30°角的頂點D放在AB邊上,E、F分別在AC、BC上,當點DAB邊上移動時,DE始終與AB垂直,若CEFDEF相似,則AD=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】8分)如圖,AC是O的直徑,OB是O的半徑,PA切O于點A,PB與AC的延長線交于點M,COB=APB.

(1)求證:PB是O的切線;

(2)當OB=3,PA=6時,求MB,MC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數字1,2,3.

(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數字是奇數的概率為________;

(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數字,求這兩個數字之和是3的倍數的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形 ABCO 是菱形,以點 O 為坐標原點,OC 所在直線為軸建立平面直角坐標系.若點 A 的坐 標為(-5,12),直線 AC、邊 AB 軸的交點分別是點 D 與點 E,連接 BD.

(1)求菱形 ABCO 的邊長;

(2) BD 所在直線的解析式

(3)直線 AC 上是否存在一點 P 使得的面積相等?若存在,請直接寫出點 P 的坐標若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=2,∠BAC=20°.動點P、Q分別在直線BC上運動,且始終保持∠PAQ=100°.設BP=xCQ=y,則yx之間的函數關系用圖象大致可以表示為( )

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示AB為⊙O的一條弦,點C為劣弧AB的中點,E為優(yōu)弧AB上一點,點FAE的延長線上,且BE=EF,線段CE交弦AB于點D.

(1)求證:CEBF;

(2)BD=2,且EA:EB:EC=3:1:,求BCD的面積(注:根據圓的對稱性可知OCAB).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,AC為對角線,EAB上一點,過點EEF∥AD,與AC,DC分別交于點G,F,HCG的中點,連接DE,EH,DH,FH.下列結論中結論正確的有(

①EG=DF;

②∠AEH+∠ADH=180°;

③△EHF≌△DHC;

,則SEDH=13SCFH .

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案