【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點(diǎn)O,CD是弦,且CD⊥AB于點(diǎn)F,連接AD,過點(diǎn)B的直線與線段AD的延長(zhǎng)線交于點(diǎn)E,且∠E=∠ACF.
(1)若CD=2 , AF=3,求⊙O的周長(zhǎng);
(2)求證:直線BE是⊙O的切線.
【答案】解:(1)連接OC.設(shè)半徑為r,
∵OA⊥CD,
∴DF=FC=,
在RT△OFC中,∵∠OFC=90°,F(xiàn)C=,OF=r﹣3,OC=r,
∴r2=(r﹣3)2+()2 ,
∴r=4,
∴⊙O的周長(zhǎng)為8π.
(2)證明:∵OA⊥CD,
∴DF=FC,AD=AC,∠AFD=90°
∴∠ADC=∠ACD,
∵∠E=∠ACD,
∴∠ADC=∠E,
∴CD∥EB,
∴∠AFD=∠ABE=90°,
∴BE是⊙O的切線.
【解析】(1)連接OC.設(shè)半徑為r,在RT△OFC中利用勾股定理即可解決問題.
(2)只要證明CD∥EB,即可得到∠AFD=∠ABE=90°,由此可以得出結(jié)論.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用切線的判定定理的相關(guān)知識(shí)可以得到問題的答案,需要掌握切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O為直線AB上一點(diǎn),∠COE是直角,OF平分∠AOE.
(1)如圖①,若∠COF=34°,則∠BOE=________;若∠COF=n°,則∠BOE=________;∠BOE與∠COF的數(shù)量關(guān)系為________________.
(2)當(dāng)射線OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到如圖②的位置時(shí),(1)中∠BOE與∠COF的數(shù)量關(guān)系是否仍然成立?請(qǐng)說明理由.
(3)在圖③中,若∠COF=65°,在∠BOE的內(nèi)部是否存在一條射線OD,使得2∠BOD與∠AOF的和等于∠BOE與∠BOD的差的一半?若存在,請(qǐng)求出∠BOD的度數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角頂點(diǎn)C為旋轉(zhuǎn)中心,將△ABC逆時(shí)針旋轉(zhuǎn)到△A′B′C的位置,其中A′、B′分別是A、B的對(duì)應(yīng)點(diǎn),且點(diǎn)B在斜邊A′B′上,直角邊CA′交AB于D,則旋轉(zhuǎn)角∠A CA′的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年6月27日,四川共青圖雨城區(qū)委在中里鎮(zhèn)文化館舉辦了第二期青年剪紙培訓(xùn),參加培訓(xùn)的小王想把一塊Rt△ABC廢紙片剪去一塊矩形BDEF紙片,如圖所示,若∠C=30°,AB=10cm,則該矩形BDEF的面積最大為( )
A.4cm3
B.5cm3
C.10cm3
D.25cm3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)x,y在數(shù)軸上對(duì)應(yīng)點(diǎn)如圖所示:
(1)在數(shù)軸上表示﹣x,|y|;
(2)試把x,y,0,﹣x,|y|這五個(gè)數(shù)從小到大用“<”號(hào)連接,
(3)化簡(jiǎn):|x+y|﹣|y﹣x|+|y|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了開展陽(yáng)光體育運(yùn)動(dòng),讓學(xué)生每天能鍛煉一小時(shí),某學(xué)校去體育用品商店購(gòu)買籃球與足球,籃球每只定價(jià)100元,足球每只定價(jià)50元.體育用品商店向?qū)W校提供兩種優(yōu)惠方案:①買一只籃球送一只足球;②籃球和足球都按定價(jià)的80%付款.現(xiàn)學(xué)校要到該體育用品商店購(gòu)買籃球30只,足球x只(x>30).
(1)若該學(xué)校按方案①購(gòu)買,籃球需付款 元,足球需付款 元(用含x的式子表示);
若該學(xué)校按方案②購(gòu)買,籃球需付款 元,足球需付款 元(用含x的式子表示);
(2)若x=40,請(qǐng)通過計(jì)算說明按方案①、方案②哪種方案購(gòu)買較為合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平行四邊形ABCD中,連接BD,AD=6cm,BD=8cm,∠DBC=90°,現(xiàn)將△AEF沿BD的方向勻速平移,速度為2cm/s,同時(shí),點(diǎn)G從點(diǎn)D出發(fā),沿DC的方向勻速移動(dòng),速度為2cm/s.當(dāng)△AEF停止移動(dòng)時(shí),點(diǎn)G也停止運(yùn)動(dòng),連接AD,AG,EG,過點(diǎn)E作EH⊥CD于點(diǎn)H,如圖2所示,設(shè)△AEF的移動(dòng)時(shí)間為t(s)(0<t<4).
(1)當(dāng)t=1時(shí),求EH的長(zhǎng)度;
(2)若EG⊥AG,求證:EG2=AEHG;
(3)設(shè)△AGD的面積為y(cm2),當(dāng)t為何值時(shí),y可取得最大值,并求y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時(shí)出發(fā),勻速行駛.設(shè)行駛的時(shí)間為x(時(shí)),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中y與x之間的函數(shù)關(guān)系.根據(jù)圖中信息:
(1)求線段AB所在直線的函數(shù)解析式;
(2) 可求得甲乙兩地之間的距離為 千米;
(3)已知兩車相遇時(shí)快車走了180千米,則快車從甲地到達(dá)乙地所需時(shí)間為 小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,且AB=4 . 點(diǎn)C,E分別在⊙O上,且OC⊥AB于點(diǎn)D,∠E=30°,連接OA.
(1)求OA的長(zhǎng);
(2)若AF是⊙O的另一條弦,且點(diǎn)O到AF的距離為2 , 直接寫出∠BAF的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com