【題目】快、慢兩車分別從相距180千米的甲、乙兩地同時出發(fā),沿同一路線勻速行駛,相向而行,快車到達(dá)乙地停留一段時間后,按原路原速返回甲地.慢車到達(dá)甲地比快車到達(dá)甲地早小時,慢車速度是快車速度的一半,快、慢兩車到達(dá)甲地后停止行駛,兩車距各自出發(fā)地的路程y(千米)與所用時間x(小時)的函數(shù)圖象如圖所示,請結(jié)合圖象信息解答下列問題:

(1)請直接寫出快、慢兩車的速度;

(2)求快車返回過程中y(千米)與x(小時)的函數(shù)關(guān)系式;

(3)兩車出發(fā)后經(jīng)過多長時間相距90千米的路程?直接寫出答案.

【答案】(1)快車速度: 120千米/時,慢車速度:60千米/時;(2)y=﹣120x+420(2x;(3)兩車出發(fā)后經(jīng)過小時相距90千米的路程.

【解析】

試題分析:(1)快車速度:180×2÷)=120千米/時,慢車速度:120÷2=60千米/時;

(2)快車停留的時間:=(小時),=2(小時),即C(2,180),設(shè)CD的解析式為:y=kx+b,則

將C(2,180),D(,0)代入,得,解得快車返回過程中y(千米)與x(小時)的函數(shù)關(guān)系式為y=﹣120x+420(2x);

(3)相遇之前:120x+60x+90=180,解得x=;

相遇之后:120x+60x﹣90=180,解得x=;

快車從甲地到乙地需要180÷120=小時,快車返回之后:60x=90+120(x﹣解得x=

綜上所述,兩車出發(fā)后經(jīng)過小時相距90千米的路程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了綠化環(huán)境,育英中學(xué)八年級三班同學(xué)都積極參加植樹活動,今年植樹節(jié)時,該班同學(xué)植樹情況的部分?jǐn)?shù)據(jù)如圖所示,請根據(jù)統(tǒng)計圖信息,回答下列問題:(第(1),(3)小題需列式解答)

(1)八牛級三班共有多少名同學(xué)?
(2)條形統(tǒng)計圖中,m= , n=。
(3)扇形統(tǒng)計圖中,算出植樹2棵的人數(shù)所對應(yīng)的扇形圓心角的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a+b3,a2+b273ab,則ab等于( 。

A.2B.1C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,無限循環(huán)小數(shù)都可以轉(zhuǎn)化為分?jǐn)?shù).例如:將 轉(zhuǎn)化為分?jǐn)?shù)時,可設(shè) =x,則x=0.3+ x,解得x= ,即 = .仿此方法,將 化成分?jǐn)?shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,∠C=90°,點D、E是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若點P在線段AB上,如圖(1),∠α=50°,則∠1+∠2=°
(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:
(3)若點P運動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.
(4)若點P運動到△ABC形外,如圖(4),則∠α、∠1、∠2之間的關(guān)系為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿BC方向平移3cm得到△DEF,若四邊形ABFD的周長為22cm,則△ABC的周長為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校需購買一批課桌椅供學(xué)生使用,已知A型課桌椅230元/套,B型課桌椅200元/套.
(1)該校購買了A,B型課桌椅共250套,付款53000元,求A,B型課桌椅各買了多少套?
(2)因?qū)W生人數(shù)增加,該校需再購買100套A,B型課桌椅,現(xiàn)只有資金22000元,最多能購買A型課桌椅多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直線上順次取A,B,C三點,分別以AB,BC為邊長在直線的同側(cè)作正三角形,作得兩個正三角形的另一頂點分別為D,E.

(1)如圖①,連結(jié)CD,AE,求證:CD=AE;
(2)如圖②,若AB=1,BC=2,求DE的長;
(3)如圖③,將圖②中的正三角形BEC繞B點作適當(dāng)?shù)男D(zhuǎn),連結(jié)AE,若有DE2+BE2=AE2 , 試求∠DEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)填入表示它所在的集合里.
﹣2,7,﹣1.732,0,3.14,﹣(+5),﹣ ,﹣(﹣3),2007
(1)正數(shù)集合{ …}
(2)負(fù)數(shù)集合{ …}
(3)整數(shù)集合{ …}
(4)有理數(shù)集合{ …}.

查看答案和解析>>

同步練習(xí)冊答案