【題目】因式分解:
(1).
(2).
(3).
(4).
【答案】(1) ;(2)(5a+b)(a-5b);(3)(x-y+z)(x-y-z);(4) .
【解析】
(1)直接利用完全平方公式進(jìn)行分解;
(2)利用平方差公式分解因式;
(3)前3項(xiàng)分成一組利用完全平方公式分解,然后再與第四項(xiàng)利用平方差公式分解因式;
(4)把1+x看作一個整體,利用提公因式法分解因式即可.
解:(1)
= ;
(2),
=(3a-2b+2a+3b)(3a-2b-2a-3b),
=(5a+b)(a-5b);
(3),
=(x2-2xy+y2)-z2,
=(x-y)2-z2,
=(x-y+z)(x-y-z);
(4),
=(1+x )+x(1+x),
= .
故答案為:(1) ;(2)(5a+b)(a-5b);(3)(x-y+z)(x-y-z);(4) .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖∠AED=∠C,∠DEF=∠B,請你說明∠1與∠2相等嗎?為什么?
解:因?yàn)椤?/span>AED=∠C(已知)
所以 ∥ ( )
所以∠B+∠BDE=180°( )
因?yàn)椤?/span>DEF=∠B(已知)
所以∠DEF+∠BDE=180°( )
所以 ∥ ( )
所以∠1=∠2( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
①; ②; ③……
根據(jù)上述規(guī)律解決下列問題:
(1)完成第四個等式: ;
(2)猜想第個等式(用含的式子表示),并證明其正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F是正方形ABCD的邊AD上兩個動點(diǎn),滿足AE=DF.連接CF交BD于點(diǎn)G,連接BE交AG于點(diǎn)H.若正方形的邊長為1,則線段DH長度的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一個含45°角的直角三角板BEF和一個正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)B重合,聯(lián)結(jié)DF,點(diǎn)M,N分別為DF,EF的中點(diǎn),聯(lián)結(jié)MA,MN.
(1)如圖1,點(diǎn)E,F分別在正方形的邊CB,AB上,請判斷MA,MN的數(shù)量關(guān)系和位置關(guān)系,直接
寫出結(jié)論;
(2)如圖2,點(diǎn)E,F分別在正方形的邊CB,AB的延長線上,其他條件不變,那么你在(1)中得到的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在梯形中,,,,,,點(diǎn)E、F分別在邊、上,,點(diǎn)P與在直線的兩側(cè),,,射線、與邊分別相交于點(diǎn)M、N,設(shè),.
(1)求邊的長;
(2)如圖,當(dāng)點(diǎn)P在梯形內(nèi)部時,求關(guān)于x的函數(shù)解析式,并寫出定義域;
(3)如果的長為2,求梯形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線y=﹣x+2與反比例函數(shù)y=的圖象有唯一公共點(diǎn),若直線y=﹣x+b與反比例函數(shù)y=的圖象有2個公共點(diǎn),則b的取值范圍是( 。
A. b>2 B. ﹣2<b<2 C. b>2或b<﹣2 D. b<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南沙群島是我國固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至B處時,測得該島位于正北方向海里的C處,為了防止某國還巡警干擾,就請求我A處的魚監(jiān)船前往C處護(hù)航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com