精英家教網(wǎng)如圖,∠AOB=60°,OD、OE分別平分∠BOC、∠AOC,那么∠EOD=
 
°.
分析:OD、OE分別平分∠BOC、∠AOC,可得∠EOD=∠EOC+∠COD=
1
2
∠AOB,進而得到∠EOD的度數(shù).
解答:解:∵OD、OE分別平分∠BOC、∠AOC,
∴∠BOD=∠COD=
1
2
∠BOC,∠AOE=∠EOC=
1
2
∠AOC,
∵∠AOB=60°,
∴∠EOD=∠COD+∠EOC=
1
2
(∠BOC+∠AOC)=
1
2
∠AOB=30°.
故答案為:30.
點評:本題考查角與角之間的運算,注意結合圖形,發(fā)現(xiàn)角與角之間的關系,進而求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,∠AOB=60°,M,N是OB上的點,OM=4,MN=2
3

(1)設⊙O過點M、N,C、D分別是MN同側(cè)的圓上點和圓外點.求證:∠MCN>∠MDN;
(2)若P是OA上的動點,求∠MPN的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,∠AOB=60°,點M是射線OB上的點,OM=4,以點M為圓心,2cm為半徑作圓.若OA繞點O按逆時針方向旋轉(zhuǎn),當OA和⊙M相切時,OA旋轉(zhuǎn)的角度是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,∠AOB=60°,P、Q兩點分別由O點沿OA、OB方向同時移動,移動速度分別為a米/秒和b米/精英家教網(wǎng)秒,過P、Q分別作PM⊥OB于M,QN⊥OA于N,求:
(1)△POM與△QON的周長之比與面積之比;
(2)若在移動過程中,P與N重合時,求
ab
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•金華模擬)如圖,∠AOB=60°,點P在∠AOB的角平分線上,OP=10cm,點E、F是∠AOB兩邊OA,OB上的動點,當△PEF的周長最小時,點P到EF距離是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,∠AOB=60°,OC是∠AOB的平分線,則∠AOC=
30
30
度.

查看答案和解析>>

同步練習冊答案