【題目】某商場打算在年前用30000元購進(jìn)一批彩燈進(jìn)行銷售,由于進(jìn)貨廠家促銷,實際可以以8折的價格購進(jìn)這批彩燈,結(jié)果可以比計劃多購進(jìn)了100盞彩燈.
(1)該商場購進(jìn)這種彩燈的實際進(jìn)價為多少元?
(2)該商場打算在實際進(jìn)價的基礎(chǔ)上,每盞燈加價50%的銷售,但可能會面臨滯銷,因此將有20%的彩燈需要降價,以5折出售,該商場要想獲利不低于15000元,應(yīng)至少在購進(jìn)這種彩燈多少盞?
【答案】(1)60元;(2)215盞
【解析】
(1)設(shè)該商場實際購進(jìn)每盞彩燈為x元,則實際進(jìn)價為0.8x元,根據(jù)實際比計劃多購進(jìn)100盞彩燈列分式方程求解即可;
(2)設(shè)再購進(jìn)彩燈a盞,根據(jù)利潤=售價﹣進(jìn)價以及要求獲得利潤不低于15000元的關(guān)系列出不等式并解答即可.
解:(1)設(shè)該商場實際購進(jìn)每盞彩燈為x元,則實際進(jìn)價為0.8x元,
依題意得:=+100,
解得x=75,
經(jīng)檢驗x=75是所列方程的根,
則0.8x=0.8×75=60(元).
答:該貨棧實際購進(jìn)每盞彩燈為60元;
(2)設(shè)再購進(jìn)彩燈a盞,
由(1)知,實際購進(jìn)30000÷60=500(盞),
依題意得:(500+a)(1﹣20%)×60×50%+(500+a)×20%×[60×(1+50%)×0.5﹣60]≥15000,
解得a≥.
因為a取正整數(shù),
所以a=215.
答:至少再購進(jìn)彩燈215盞.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距 120 千米,小張騎自行車從甲地出發(fā)勻速駛往乙地,出發(fā) a小時開始休息,1 小時后仍按原速繼續(xù)行駛.小李比小張晚出發(fā)一段時間,騎摩托車從乙地勻速駛往甲地,圖中折線 CD-DE-EF,線段 AB 分別表示小張、小李與乙地的距離 y(千米)與小張出發(fā)時間 x(小時)之間的函數(shù)關(guān)系圖象.
(1)小李到達(dá)甲地后,再經(jīng)過 小時小張到達(dá)乙地;小張騎自行車的速度是 千米/時;
(2)當(dāng) a=4 時,求小張與乙地的距離 y乙 與小張出發(fā)的時間 x(小時)之間的函數(shù)關(guān)系式;
(3)若小張恰好在休息期間與小李相遇,請直接寫出 a 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系,拋物線(,)與軸交于A、B兩點(diǎn)(A在B左側(cè)),與軸交于點(diǎn)C,過拋物線的頂點(diǎn)P且與軸平行的直線交BC于點(diǎn)D,且滿足BD:CD=3:2,
(1)若∠ACB=90°,求拋物線解析式;
(2)問OC和DP能否相等?若能,求出拋物線解析式,若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABOC中,AB=2,∠A=60°,菱形的一個頂點(diǎn)C在反比例函數(shù)y=(k≠0)的圖象上,則反比例函數(shù)的解析式為( )
A.y=B.y=C.y=D.y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+6(a≠0)交x軸于點(diǎn)A(6,0)和點(diǎn)B(-1,0),交y軸于點(diǎn)C.
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)如圖(1),點(diǎn)P是拋物線上位于直線AC上方的動點(diǎn),過點(diǎn)P分別作x軸,y軸的平行線,交直線AC于點(diǎn)D,E,當(dāng)PD+PE取最大值時,求點(diǎn)P的坐標(biāo);
(3)如圖(2),點(diǎn)M為拋物線對稱軸l上一點(diǎn),點(diǎn)N為拋物線上一點(diǎn),當(dāng)直線AC垂直平分△AMN的邊MN時,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k<0)的圖象與反比例函數(shù)y=圖象都經(jīng)過點(diǎn)A(a,4),一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點(diǎn)C(3,0),且與兩坐標(biāo)軸圍成的三角形的面積為3.
(1)求這兩個函數(shù)的表達(dá)式;
(2)將直線AB向下平移5個單位長度后與第四象限內(nèi)的反比例函數(shù)圖象交于點(diǎn)D,連接AD、BD,求△ADB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,P是上的動點(diǎn),D是延長線上的定點(diǎn),連接交于點(diǎn)Q.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對線段的長度之間的關(guān)系進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整:
(1)對于點(diǎn)P在上的不同位置,畫圖測量,得到了線段的長度(單位:cm)的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | |
0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 | |
4.99 | 4.56 | 4.33 | 4.23 | 4.53 | 4.95 | 5.51 | |
4.99 | 3.95 | 3.31 | 2.95 | 2.80 | 2.79 | 2.86 |
在的長度這三個量中,確定_________的長度是自變量,_________的長度和_________的長度都是這個自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)時,的長度約為_______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年3月至5月,某校開展了一系列居家閱讀活動.學(xué)生利用“宅家”時光,在書海中遨游,從閱讀中獲得精神慰藉和自我提升.為了解學(xué)生居家閱讀的情況,學(xué)校從七、八兩個年級各隨機(jī)抽取50名學(xué)生,進(jìn)行了居家閱讀情況調(diào)查.下面給出了部分?jǐn)?shù)據(jù)信息:
.兩個年級學(xué)生平均每周閱讀時長(單位:小時)的頻數(shù)分布直方圖如下(數(shù)據(jù)分成4組:,,,):
b.七年級學(xué)生平均每周閱讀時長在這一組的是:6 6 7 7 7 7 7 8 8 8 8 8 8 8 8 8
c.兩個年級學(xué)生平均每周閱讀時長的平均數(shù)、中位數(shù)、眾數(shù)、方差如下:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
七年級 | 6.3 | 8 | 7.0 | |
八年級 | 6.0 | 7 | 7 | 6.3 |
根據(jù)以上信息,回答下列問題:
(1)補(bǔ)全圖2;
(2)寫出表中的值;
(3)返校后,學(xué)校計劃將平均每周閱讀時長不低于9小時的學(xué)生授予“閱讀之星”稱號.小麗說:“根據(jù)頻數(shù)分布直方圖中的數(shù)據(jù)信息,估計七年級約有20%的學(xué)生獲得該稱號,八年級約有18%的學(xué)生獲得該稱號,所以七年級獲得該稱號的人數(shù)一定比八年級獲得該稱號的人數(shù)多.”你認(rèn)為她的說法________(填入“正確”或“錯誤”);
(4)請你結(jié)合數(shù)據(jù)對兩個年級的居家閱讀情況進(jìn)行評價.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某租賃公司有型兩種客車,它們的載客量和租金標(biāo)準(zhǔn)如下:
客車類型 | 載客量(人/輛) | 租金(元/輛) |
型 | 45 | 400 |
型 | 30 | 280 |
如果某學(xué)校計劃組織195名師生到培訓(xùn)基地參加社會實踐活動,那么租車的總費(fèi)用最低為____________________元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com