【題目】如圖,將邊長(zhǎng)為4的正方形置于平面直角坐標(biāo)系第一象限,使AB邊落在x軸正半軸上,且點(diǎn)A的坐標(biāo)是(1,0).
(1)直線y=x﹣經(jīng)過(guò)點(diǎn)C,且與x軸交于點(diǎn)E,求四邊形AECD的面積;
(2)若直線l經(jīng)過(guò)點(diǎn)E,且將正方形ABCD分成面積相等的兩部分,求直線l的函數(shù)表達(dá)式.
【答案】(1)四邊形AECD的面積是10;(2)y=2x﹣4.
【解析】
(1)先求出E點(diǎn)的坐標(biāo),根據(jù)梯形的面積公式即可求出四邊形AECD的面積;
(2)根據(jù)已知求出直線1上點(diǎn)G的坐標(biāo),設(shè)直線l的解析式是y=kx+b,把E、G的坐標(biāo)代入即可求出解析式.
(1)y=x﹣,當(dāng)y=0時(shí),x=2,
所以E(2,0),
由已知可得:AD=AB=BC=DC=4,AB∥DC,
所以四邊形AECD是直角梯形,
所以四邊形AECD的面積S=(2﹣1+4)×4÷2=10,
答:四邊形AECD的面積是10;
(2)在DC上取一點(diǎn)G,使CG=AE=1,
則S梯形AEGD=S梯形EBCG,易得點(diǎn)G坐標(biāo)為(4,4),
設(shè)直線l的表達(dá)式是y=kx+b,
將點(diǎn)E(2,0)代入得:2k+b=0,即b=﹣2k,
將點(diǎn)G(4,4)代入得:4k+b=4,即4k﹣2k=4,
解得k=2,所以b=﹣4,所以y=2x﹣4,
答:直線l的表達(dá)式是y=2x﹣4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊△ABC的邊長(zhǎng)為8,點(diǎn)P是AB邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B不重合),直線l是經(jīng)過(guò)點(diǎn)P的一條直線,把△ABC沿直線l折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B’.
(1)如圖1,當(dāng)PB=4時(shí),若點(diǎn)B’恰好在AC邊上,則AB’的長(zhǎng)度為_____;
(2)如圖2,當(dāng)PB=5時(shí),若直線l//AC,則BB’的長(zhǎng)度為 ;
(3)如圖3,點(diǎn)P在AB邊上運(yùn)動(dòng)過(guò)程中,若直線l始終垂直于AC,△ACB’的面積是否變化?若變化,說(shuō)明理由;若不變化,求出面積;
(4)當(dāng)PB=6時(shí),在直線l變化過(guò)程中,求△ACB’面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠B=45°,AB=2,AC=4,△DAE是等腰直角三角形,且∠DAE=90°, D在邊BC上.
(1)求BC的長(zhǎng);
(2)如圖1,當(dāng)點(diǎn)E在AC上時(shí),求點(diǎn)E到BC的距離;
(3)如圖2,當(dāng)點(diǎn)D從點(diǎn)B向點(diǎn)C運(yùn)動(dòng)時(shí),求點(diǎn)E到BC的距離的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點(diǎn)D在線段BC上,AF平分DE交BC于點(diǎn)F,連接BE,EF.
(1)CD與BE相等?若相等,請(qǐng)證明;若不相等,請(qǐng)說(shuō)明理由;
(2)若∠BAC=90°,求證:BF2+CD2=FD2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程rx2+(r+2)x+r﹣1=0有根只有整數(shù)根的一切有理數(shù)r的值有( 。﹤(gè).
A. 1 B. 2 C. 3 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫(xiě)出kx+b﹣<0的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,BM是AC邊上的中線,點(diǎn)D,E分別在邊AC和BC上,DB=DE,DE與BM相交于點(diǎn)N,EF⊥AC于點(diǎn)F,以下結(jié)論:
①∠DBM=∠CDE;②S△BDE<S四邊形BMFE;③CD·EN=BN·BD;④AC=2DF.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某人在山坡坡腳C處測(cè)得一座建筑物頂點(diǎn)A的仰角為63.4°,沿山坡向上走到P處再測(cè)得該建筑物頂點(diǎn)A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.
(1)求此人所在位置點(diǎn)P的鉛直高度.(結(jié)果精確到0.1米)
(2)求此人從所在位置點(diǎn)P走到建筑物底部B點(diǎn)的路程(結(jié)果精確到0.1米)
(測(cè)傾器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈,tan63.5°≈2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,∠B=30°,∠ACB=100°,AE平分∠BAC,求∠EAD的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com