【題目】方程x(x+1)=5(x+1)的根是( )
A.﹣1
B.5
C.1或5
D.﹣1或5
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形AOCB在平面直角坐標(biāo)系xoy中,點O為原點,點B在反比例函數(shù)(x>0)圖象上,△BOC的面積為8.
(1)求反比例函數(shù)的關(guān)系
(2)若動點E從A開始沿AB向B以每秒1個單位的速度運動,同時動點F從B開始沿BC向C以每秒2個單位的速度運動,當(dāng)其中一個動點到達(dá)端點時,另一個動點隨之停止運動.若運動時間用t表示,△BEF的面積用S表示,求出S關(guān)于t的函數(shù)關(guān)系式?
(3)當(dāng)運動時間為秒時,在坐標(biāo)軸上是否存在點P,使△PEF的周長最。咳舸嬖,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填寫下列空格,完成證明.
已知:如圖,AD是△ABC的角平分線,點E在BC上,點F在CA的延長線上,EF∥AD,EF交AB于點G.
求證:∠3=∠F
證明:因為AD是△ABC的角平分線 ( 已知 )
所以∠1=∠2 ( )
因為EF∥AD(已知)
所以∠3=∠ ( )
∠F=∠ ( )
所以∠3=∠F( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】動手實驗:利用矩形紙片(如圖1)剪出一個正六邊形紙片;再利用這個正六邊形紙片做一個無蓋的正六棱柱(棱柱底面為正六邊形) ,如圖2.
(1) 做一個這樣的正六棱柱所需最小的矩形紙片的長與寬的比為多少?
(2) 在(1)的條件下,當(dāng)矩形的長為2a時,要使無蓋正六棱柱側(cè)面積最大,正六棱柱的高為多少?并求此時矩形紙片的利用率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把a(bǔ)2﹣4a多項式分解因式,結(jié)果正確的是( 。
A. a(a﹣4) B. (a+2)(a﹣2) C. a(a+2)(a﹣2) D. (a﹣2)2﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解方程x2+8x+7=0,則配方正確的是( )
A.(x﹣4)2=9
B.(x+4)2=9
C.(x﹣8)2=16
D.(x+8)2=57
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定一個物體向右運動為正,向左運動為負(fù).如果該物體向左連續(xù)運動兩次,每次運動3 米,那么下列算式中,可以表示這兩次運動結(jié)果的是( )
A. (-3)2 B. (-3)-(-3) C. 2×3 D. 2×(-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,對角線AC、BD相交于點O,設(shè)銳角∠AOB=α,將△DOC按逆時針方向旋轉(zhuǎn)得到△D′OC′(0°<旋轉(zhuǎn)角<90°)連接AC′、BD′,AC′與BD′相交于點M.
(1)、當(dāng)四邊形ABCD為矩形時,如圖1.求證:△AOC′≌△BOD′.
(2)、當(dāng)四邊形ABCD為平行四邊形時,設(shè)AC=kBD,如圖2.
①猜想此時△AOC′與△BOD′有何關(guān)系,證明你的猜想;
②探究AC′與BD′的數(shù)量關(guān)系以及∠AMB與α的大小關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D是邊BC的中點,過點A、D分別作BC與AB的平行線,相交于點E,連結(jié)EC、AD.
(1)求證:四邊形ADCE是矩形;
(2)當(dāng)∠BAC=90°時,求證:四邊形ADCE是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com