【題目】我校有2000名學(xué)生,為了解全校學(xué)生的上學(xué)方式,我校數(shù)學(xué)興趣小組在全校隨機(jī)抽取了150名學(xué)生進(jìn)行抽樣調(diào)查。整理樣本數(shù)據(jù),得到下列圖表:

1)若150名學(xué)生都在同一個(gè)年級(jí)抽取,這樣的抽樣是否合理?_______(填);

2)根據(jù)調(diào)查結(jié)果,估計(jì)全校2000名學(xué)生上學(xué)方式的情況:步行______人;騎車_____人;乘公共交通工具_______人; 乘私家車_____人;其它_______人,并繪制成條形統(tǒng)計(jì)圖;

(3)數(shù)學(xué)興趣小組結(jié)合調(diào)查獲取的信息,向?qū)W校提出了一些建議。如:騎車上學(xué)的學(xué)生數(shù)約占全校的34%,建議學(xué)校合理安排自行車停車場地。請(qǐng)你結(jié)合上述統(tǒng)計(jì)的全過程,再提出一條合理化建議.

【答案】1)否;(2200680;600;400;120,條形統(tǒng)計(jì)圖見解析;(3)乘公共交通工具上學(xué)的學(xué)生占30%,建議學(xué)校定期給學(xué)生普及公共安全知識(shí).

【解析】

1)根據(jù)抽樣調(diào)查必須具備隨機(jī)性,分析即可得解;

2)分別用每種上學(xué)方式所占百分比與總?cè)藬?shù)2000相乘即可得解;

3)根據(jù)實(shí)際情況提出合理建議即可.

1)因?yàn)槌闃诱{(diào)查需要具備隨機(jī)性,所以不合理;

2)步行人;

騎車人;

乘公共交通工具人;

乘私家車人;

其它人;

條形統(tǒng)計(jì)圖如下:

3)建議:乘公共交通工具上學(xué)的學(xué)生占30%,建議學(xué)校定期給學(xué)生普及公共安全知識(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商人制成了一個(gè)如圖所示的轉(zhuǎn)盤,取名為開心大轉(zhuǎn)盤,游戲規(guī)定:參與者自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母A,則收費(fèi)2元,若指針指向字母B,則獎(jiǎng)勵(lì)3元;若指針指向字母C,則獎(jiǎng)勵(lì)1元.一天,前來尋開心的人轉(zhuǎn)動(dòng)轉(zhuǎn)盤80次,你認(rèn)為該商人是盈利的可能性大還是虧損的可能性大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=∠2,要使ABDACD,需從下列條件中增加一個(gè),錯(cuò)誤的選法是(

A.ADB=∠ADCB.B=∠CC.ABACD.DBDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中ADBC,垂足為D,y軸于點(diǎn)H,直線BC的解析式為y=-2x+4.點(diǎn)H(0,2),

1)求證:△AOH≌△COB;

2)求D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,一次函數(shù)的圖像與軸、軸分別交于點(diǎn)A、點(diǎn)B,與直線 相交于點(diǎn)C.過點(diǎn)B軸的平行線l.點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn).

1)求點(diǎn)A,點(diǎn)B的坐標(biāo).

2)若,求點(diǎn)P的坐標(biāo).

3)若點(diǎn)E是直線上的一個(gè)動(dòng)點(diǎn),當(dāng)APE是以AP為直角邊的等腰直角三角形時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,B=30°,CD,CE分別是AB邊上的中線和高.

(1)求證:AE=ED;

(2)若AC=2,求CDE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD中,AB=4,ECD邊中點(diǎn),FAD邊中點(diǎn),AEBDG,交BFH,連接DH.

(1)求證:BG=2DG;

(2)求AH:HG:GE的值;

(3)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對(duì)稱點(diǎn)為點(diǎn)D,連接AD,BD,其中BD交直線AP于點(diǎn)E.

(1)依題意補(bǔ)全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);

(3)連結(jié)CE,寫出AE, BE, CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.在平面直角坐標(biāo)系內(nèi),△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,﹣2),B(4,﹣1),C(3,﹣3)(正方形網(wǎng)格中,每個(gè)小正方形的邊長都是1個(gè)單位長度).

(1)作出△ABC向左平移5個(gè)單位長度,再向下平移3個(gè)單位長度得到的△A1B1C1;

(2)以坐標(biāo)原點(diǎn)O為位似中心,相似比為2,在第二象限內(nèi)將△ABC放大,放大后得到△A2B2C2作出△A2B2C2;

(3)以坐標(biāo)原點(diǎn)O為旋轉(zhuǎn)中心,將△ABC逆時(shí)針旋轉(zhuǎn)90°,得到△A3B3C3作出△A3B3C3,并求線段AC掃過的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案