【題目】如圖,在Rt△ABC中,∠B=90°,BC=5 ,∠C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向A點勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(t>0).過點D作DF⊥BC于點F,連接DE、EF.
(1)AC的長是 , AB的長是 .
(2)在D、E的運動過程中,線段EF與AD的關系是否發(fā)生變化?若不變化,那么線段EF與AD是何關系,并給予證明;若變化,請說明理由.
(3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.
(4)當t為何值,△BEF的面積是2 ?
【答案】
(1)10;5
(2)
解:EF與AD平行且相等.
證明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,
∴DF=t.
又∵AE=t,
∴AE=DF,
∵AB⊥BC,DF⊥BC,
∴AE∥DF.
∴四邊形AEFD為平行四邊形.
∴EF與AD平行且相等
(3)
解:能;
理由如下:
∵AB⊥BC,DF⊥BC,
∴AE∥DF.
又∵AE=DF,
∴四邊形AEFD為平行四邊形.
∵AB=BCtan30°=5 × =5,
∴AC=2AB=10.
∴AD=AC﹣DC=10﹣2t.
若使AEFD為菱形,則需AE=AD,
即t=10﹣2t,t= .
即當t= 時,四邊形AEFD為菱形
(4)
解:∵在Rt△CDF中,∠A=30°,
∴DF= CD,
∴CF= t,
又∵BE=AB﹣AE=5﹣t,BF=BC﹣CF=5 ﹣ t,
∴ ,
即: ,
解得:t=3,t=7(不合題意舍去),
∴t=3.
故當t=3時,△BEF的面積為2 .
故答案為:5,10;平行且相等; ;3
【解析】(1)解:∵在Rt△ABC中,∠C=30°,
∴AC=2AB,
根據勾股定理得:AC2﹣AB2=BC2 ,
∴3AB2=75,
∴AB=5,AC=10;
在Rt△ABC中,∠C=30°,則AC=2AB,根據勾股定理得到AC和AB的值.(2)先證四邊形AEFD是平行四邊形,從而證得AD∥EF,并且AD=EF,在運動過程中關系不變.(3)求得四邊形AEFD為平行四邊形,若使AEFD為菱形則需要滿足的條件及求得.(4)BE=AB﹣AE=5﹣t,BF=BC﹣CF=5 ﹣ t,從而得到 ,然后求得t的值.
【考點精析】掌握含30度角的直角三角形和勾股定理的概念是解答本題的根本,需要知道在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數學 來源: 題型:
【題目】某學校計劃購進一批電腦和電子白板,經過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦,每臺電子白板各多少萬元?
(2)根據學校實際,需至少購進電腦和電子白板共30臺,總費用不超過28萬元,那么電子白板最多能買幾臺?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】人體中紅細胞的直徑約為0.000 007 7 m,這個數用科學記數法表示為( )
A. 77×10-7B. 7.7×10-7C. 0.77×10-5D. 7.7×10-6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料,回答問題:
(1)在化簡 的過程中,小張和小李的化簡結果不同;
小張的化簡如下: = = = ﹣
小李的化簡如下: = = = ﹣
請判斷誰的化簡結果是正確的,誰的化簡結果是錯誤的,并說明理由.
(2)請你利用上面所學的方法化簡 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】截止2019年3月8日,中國科幻電影《流浪地球》的票房約為45.6億元,成為中國科幻電影的里程碑.其中45.6億用科學記數法表示為( 。
A. 4.56×108B. 45.6×108C. 4.56×109D. 0.456×1010
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為50和39,則△EDF的面積為( )
A.11
B.5.5
C.7
D.3.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,從點P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴展下去,則P2017的坐標為( )
A.(504,﹣504)
B.(﹣504,504)
C.(﹣504,503)
D.(﹣505,504)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com