【題目】如圖①,AB是⊙O的直徑,,連接AC.
(1)求證:∠CAB=45°;
(2)如圖②,直線l經(jīng)過點(diǎn)C,在直線l上取一點(diǎn)D,使BD=AB,BD與AC相交于點(diǎn)E,連接AD,且AD=AE.
①求證:直線l是⊙O的切線;
②求的值.
【答案】(1)證明見解析(2)①證明見解析②
【解析】
(1)連接BC,由知∠CAB=∠ABC,根據(jù)AB為⊙O的直徑得∠ACB=90°,據(jù)此可得答案;(2)①連接OC、作DP⊥AB,設(shè)∠ABD=α,先根據(jù)AD=AE、BA=BD求得∠ABD=∠DAE=30°,據(jù)此知PD=BD=AB,結(jié)合OC=AB知DP=OC,據(jù)此證得四邊形DPOC為矩形,繼而得證;②證△ACD∽△BAE得==,據(jù)此知AE=CD,作EI⊥AB于點(diǎn)I,由∠CAB=45°、∠ABD=30°知BE=2EI=2×AE=AE=2CD,據(jù)此可得答案.
(1)如圖①,連接BC,
∵,
∴∠CAB=∠ABC,
∵AB為⊙O的直徑,
∴∠ACB=90°,
∴∠CAB=∠CBA=45°;
(2)①如圖②,連接OC、作DP⊥AB于點(diǎn)P,
設(shè)∠ABD=α,
∵BA=BD,
∴∠BAD=∠BDA,
∵AD=AE,
∴∠ADE=∠AED,
∴∠AED=∠BAD,
∴∠DAE=∠DBA=α,
∵∠CAB=45°,
∴∠ADE=∠AED=∠CAB+∠ABD=45°+α,
∵∠DAE+∠ADE+∠AED=180°,
∴α+α+45°+α+45°=180°,
解得:α=30°,即∠ABD=∠DAE=30°,
在Rt△BPD中,PD=BD=AB,
又∵OC=AB,
∴OC=PD,
∵△ABC是等腰直角三角形,OA=OB,
∴CO⊥AB,
∵DP⊥AB、CO⊥AB,
∴四邊形DPOC是矩形,
∴∠OCD=90°,
∴直線l是⊙O的切線;
②由①知,∠CAD=∠ABE=30°,CD∥AB,
∴∠ACD=∠EAB=45°,
則△ACD∽△BAE,
∴==,
∴AE=CD,
如圖②,作EI⊥AB于點(diǎn)I,
∵∠CAB=45°、∠ABD=30°,
∴BE=2EI=2×AE=AE=×CD=2CD,
∴=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△AOB中,將扇形COD按圖1擺放,使扇形的半徑OC、OD分別與OA、OB重合,OA=OB=2,OC=OD=1,固定等邊△AOB不動(dòng),讓扇形COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),線段AC、BD也隨之變化,設(shè)旋轉(zhuǎn)角為α.(0<α≤360°)
(1)當(dāng)OC∥AB時(shí),旋轉(zhuǎn)角α= 度;
發(fā)現(xiàn):(2)線段AC與BD有何數(shù)量關(guān)系,請(qǐng)僅就圖2給出證明.
應(yīng)用:(3)當(dāng)A、C、D三點(diǎn)共線時(shí),求BD的長.
拓展:(4)P是線段AB上任意一點(diǎn),在扇形COD的旋轉(zhuǎn)過程中,請(qǐng)直接寫出線段PC的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,四邊形ABCD中,E是對(duì)角線AC上一點(diǎn),DE=EC,以AE為直徑的⊙O與邊CD相切于點(diǎn)D,點(diǎn)B在⊙O上,連接OB.
(1)求證:DE=OE;
(2)若CD∥AB,求證:BC是⊙O的切線;
(3)在(2)的條件下,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣x﹣.
(1)在平面直角坐標(biāo)系內(nèi),畫出該二次函數(shù)的圖象;
(2)根據(jù)圖象寫出:①當(dāng)x 時(shí),y>0;
②當(dāng)0<x<4時(shí),y的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OABC是邊長為1的正方形,OC與x軸正半軸的夾角為15°,點(diǎn)B在拋物線y=ax2(a<0)的圖象上,則a的值為( 。
A. B. C. ﹣2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小梅家的陽臺(tái)上放置了一個(gè)曬衣架如圖1,圖2是曬衣架的側(cè)面示意圖,A,B兩點(diǎn)立于地面,將曬衣架穩(wěn)固張開,測(cè)得張角∠AOB=62°,立桿OA=OB=140cm,小梅的連衣裙穿在衣架后的總長度為122cm,問將這件連衣裙垂掛在曬衣架上是否會(huì)拖落到地面?請(qǐng)通過計(jì)算說明理由(參考數(shù)據(jù):sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABO為底角是30°的等腰三角形,OA=AB=4,O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸上,點(diǎn)P在直線AB上運(yùn)動(dòng),當(dāng)線段OP最短時(shí),點(diǎn)P的坐標(biāo)為( 。
A. (1,1) B. (,3) C. (3,) D. (2,2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com