【題目】己知四個車站的位置如圖所示.

(1)兩站之間的距離;(用含的代數(shù)式表示)

(2)一輛汽車從站出發(fā),每小時行駛60千米,經(jīng)過站到達(dá)C(站沒有停留).所用時間為1.5小時.汽車在站短暫停留后,繼續(xù)以相同速度行駛,再行駛2小時到達(dá)站,求的值以及汽車從站行駛到站一共用了多少小時?

【答案】1;(2;汽車從站行駛到站所用的時間0.5小時.

【解析】

1)根據(jù)題意,直接由代數(shù)式相加,即可得到答案;

2)根據(jù)題意,先求出BC的長度,然后題目中的等量關(guān)系,列出二元一次方程組,即可求出a、b的值,進(jìn)而求出BC的長度,然后求出時間.

解:(1)根據(jù)題意,兩站之間的距離為:

;

2)根據(jù)題意,

,

,解得:;

∴汽車從站行駛到站所用的時間:

小時;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,AD軸,點B的坐標(biāo)為 (-1,2),點D的坐標(biāo)為(24),將直線y=x-2向上平移m個單位,使平移后的直線恰好經(jīng)過點D .

1)求m的值;

2)平移后的直線與矩形的邊BC交于點E,求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC,AEBC于點E,ADC的平分線交AE于點O,以點O為圓心,OA為半徑的圓經(jīng)過點B,交BC于另一點F.

(1)求證:CD與⊙O相切;

(2)BF24,OE5,求tanABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2只大杯和6只小杯裝滿水,正好是2000毫升,每只大杯比小杯多裝200毫升,現(xiàn)在有只大杯和只小杯,裝滿水,正好是8000毫升,下面有四組關(guān)于的取值,其中不正確的是

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線的圖像與反比例函數(shù)的圖像分別交于點A(2,m)、B(-4,-1),其中

1)求m的值和直線的解析式;

2)若,觀察圖像,請直接寫出x的取值范圍;

3)將直線的圖像向上平移與反比例函數(shù)的圖像在第一象限內(nèi)交于點CC點的橫坐標(biāo)為1,

①判定△ABC的形狀并說明理由,②求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形AOBC的頂點AC在反比例函數(shù)圖象上,OABC,上底邊OA在直線y=x上,下底邊BCy軸于B0﹣4),則四邊形AOBC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線x軸、y軸分別交于A, B兩點,將△AOB沿直線AB翻折,使點O落在點C, P,Q分別在AB , AC,當(dāng)PC+PQ取最小值時,直線OP的解析式為(

A. y=- B. y=- C. y=- D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙OAB是直徑,⊙O的切線PCBA的延長線于點POFBCAC于點E,交PC于點F,連結(jié)AF

(1)判斷AF與⊙O的位置關(guān)系并說明理由;

(2)若AC=24,AF=15,求sinB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:

甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.

乙:分別作A,B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.

根據(jù)兩人的作法可判斷

A.甲正確,乙錯誤 B.乙正確,甲錯誤 C.甲、乙均正確 D.甲、乙均錯誤

查看答案和解析>>

同步練習(xí)冊答案