【題目】如圖,梯形ABCD中,ADBC,AEBC于點(diǎn)E,ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)B,交BC于另一點(diǎn)F.

(1)求證:CD與⊙O相切;

(2)BF24,OE5,求tanABC的值.

【答案】1)證明見(jiàn)解析;(2

【解析】試題分析:(1)過(guò)點(diǎn)OOG⊥DC,垂足為G.先證明∠OAD=90°,從而得到∠OAD=∠OGD=90°,然后利用AAS可證明△ADO≌△GDO,則OA=OG=r,則DC是⊙O的切線;
(2)連接OF,依據(jù)垂徑定理可知BE=EF=12,在Rt△OEF中,依據(jù)勾股定理可知求得OF=13,然后可得到AE的長(zhǎng),最后在Rt△ABE中,利用銳角三角函數(shù)的定義求解即可.

試題解析:

(1)證明:

過(guò)點(diǎn)OOG⊥DC,垂足為G.

∵AD∥BC,AE⊥BCE,
∴OA⊥AD.
∴∠OAD=∠OGD=90°.
在△ADO和△GDO

,
∴△ADO≌△GDO.
OA=OG.
DC是⊙O的切線.
(2)如圖所示:連接OF.

OABC,
BE=EF= BF=12.

Rt△OEF中,OE=5,EF=12,

OF=,

AE=OA+OE=13+5=18.
tanABC=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察表一,尋找規(guī)律,表二、表三、表四分別是從表一中截取的一部分,則a+bm_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在透明紙面上有一數(shù)軸(如圖1),折疊透明紙面.

1)若表示1的點(diǎn)與表示-1的點(diǎn)重合,則表示-7的點(diǎn)與表示 的點(diǎn)重合;

2)若表示-2的點(diǎn)與表示6的點(diǎn)重合,回答以下問(wèn)題:

①表示12的點(diǎn)與表示 的點(diǎn)重合;

②如圖2,若數(shù)軸上AB兩點(diǎn)之間的距離為2020(點(diǎn)A在點(diǎn)B的左側(cè)),且AB兩點(diǎn)經(jīng)折疊后重合,則AB兩點(diǎn)表示的數(shù)分別是

3)如圖3,若mn表示的點(diǎn)C和點(diǎn)D經(jīng)折疊后重合(mn),折痕與數(shù)軸的交點(diǎn)為折痕點(diǎn).已知線段CD上兩點(diǎn)P、Q (點(diǎn)P在點(diǎn)Q的左側(cè),PQCD)PQa.當(dāng)線段PQ的端點(diǎn)與折痕點(diǎn)重合時(shí),求PQ兩點(diǎn)表示的數(shù)分別是多少?(用含m,na的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象和矩形ABCD在第二象限,AD平行于x軸,且AB=2,AD=4,點(diǎn)C的坐標(biāo)為(﹣2,4).

(1)直接寫出A、B、D三點(diǎn)的坐標(biāo);

(2)若將矩形只向下平移,矩形的兩個(gè)頂點(diǎn)恰好同時(shí)落在反比例函數(shù)的圖象上,求反比例函數(shù)的解析式和此時(shí)直線AC的解析式y=mx+n.并直接寫出滿足x取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某年級(jí)380名師生秋游,計(jì)劃租用7輛客車,現(xiàn)有甲、乙兩種型號(hào)客車,它們的載客量和租金如表.

甲種客車

乙種客車

載客量(座/輛)

60

45

租金(元/輛)

550

450

1)設(shè)租用甲種客車x輛,租車總費(fèi)用為y元.求出y(元)與x(輛)之間的函數(shù)表達(dá)式;

2)當(dāng)甲種客車有多少輛時(shí),能保障所有的師生能參加秋游且租車費(fèi)用最少,最少費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠AOB=120°,點(diǎn)A繞點(diǎn)O順時(shí)針旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)A1落在射線OB上,點(diǎn)A繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)A2落在射線OB上,點(diǎn)A繞點(diǎn)A2順時(shí)針旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)A3落在射線OB上,,連接AA1,AA2AA3,依此作法,則∠AAnAn+1等于______度.(用含n的代數(shù)式表示,n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輪船在P處測(cè)得燈塔A在正北方向,燈塔B在南偏東30°方向,輪船向正東航行了900m,到達(dá)Q處,測(cè)得A位于北偏西60°方向, B位于南偏西30°方向.

1)線段BQPQ是否相等?請(qǐng)說(shuō)明理由;

2)求AB間的距離(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知四個(gè)車站的位置如圖所示.

(1)兩站之間的距離;(用含的代數(shù)式表示)

(2)一輛汽車從站出發(fā),每小時(shí)行駛60千米,經(jīng)過(guò)站到達(dá)C(站沒(méi)有停留).所用時(shí)間為1.5小時(shí).汽車在站短暫停留后,繼續(xù)以相同速度行駛,再行駛2小時(shí)到達(dá)站,求的值以及汽車從站行駛到站一共用了多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B分別在x軸、y軸上(OAOB),以AB為直徑的圓經(jīng)過(guò)原點(diǎn)OC的中點(diǎn),連結(jié)AC,BC.下列結(jié)論:①AC=BC;②若OA=4OB=2,則ABC的面積等于5;③若OAOB=4,則點(diǎn)C的坐標(biāo)是(2,2.其中正確的結(jié)論有( )

A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案