【題目】在探究“尺規(guī)三等分角”這個數(shù)學(xué)名題中,利用了如圖,該圖中,四邊形ABCD是矩形,線段AC繞點A逆時針旋轉(zhuǎn)得到線段AF,CF、BA的延長線交于點E,若∠E=∠FAE,∠ACB=21°,則∠ECD的度數(shù)是( 。
A. 7° B. 21° C. 23° D. 34°
【答案】C
【解析】
由矩形的性質(zhì)得出∠BCD=90°,AB∥CD,AD∥BC,證出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性質(zhì)得出∠ACF=2∠FEA,設(shè)∠ECD=x,則∠ACF=2x,∠ACD=3x,由互余兩角關(guān)系得出方程,解方程即可.
解:∵四邊形ABCD是矩形,
∴∠BCD=90°,AB∥CD,AD∥BC,
∴∠FEA=∠ECD,∠DAC=∠ACB=21°,
∵∠ACF=∠AFC,∠FAE=∠FEA,
∴∠ACF=2∠FEA,
設(shè)∠ECD=x,則∠ACF=2x,
∴∠ACD=3x,
∴3x+21°=90°,
解得:x=23°;
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓C過原點并與坐標軸分別交于A、D兩點,已知點B為圓C圓周上一動點,且∠ABO=30°,點D的坐標為(0,2).
(1)直接寫出圓心 C 的坐標;
(2)當△BOD為等邊三角形時,求點B的坐標;
(3)若以點B為圓心、r為半徑作圓B,當圓B與兩個坐標軸同時相切時,求點B的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連AD.
(1)求證:AD=AN;
(2)若AE=,ON=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:⊙O的半徑為25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求這兩條平行弦AB,CD之間的距離______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知半徑為2的⊙O與直線l相切于點A,點P是直徑AB左側(cè)半圓上的動點,過點P作直線l的垂線,垂足為C,PC與⊙O交于點D,連接PA、PB,設(shè)PC的長為x(2<x<4)
【1】當時,求弦PA、PB的長度;
【2】當x為何值時,PD×CD的值最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三邊AB、BC、CA長分別為30、40、50.其三條角平分線交于點O,則S△ABO :S△BCO :S△CAO =______ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,點DE分別在AB、AC上,DE∥BC,BD=CE,
(1)求證:∠B=∠C,AD=AE;
(2)若∠BAC=90°,把△ADE繞點A逆時針旋轉(zhuǎn)到圖2的位置,點M,P,N分別為DE,DC,BC的中點,連接MN,PM,PN.
①判斷△PMN的形狀,并說明理由;
②把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN的最大面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面的內(nèi)容,再解決問題.
例題:若, 求m和n的值
解:∵
∴
∴
∴,
∴,
問題:(1)若,求的值.
(2)已知a,b,c是△ABC的三邊長,滿足,且c是△ABC中最長的邊,求c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩人以相同路線前往離學(xué)校12千米的地方參加植樹活動.分析甲、乙兩人前往目的地所行駛的路程S(千米)隨時間t(分鐘)變化的函數(shù)圖象,解決下列問題:
(1)求出甲、乙兩人所行駛的路程S甲、S乙與t之間的關(guān)系式;
(2)甲行駛10分鐘后,甲、乙兩人相距多少千米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com