【題目】小明某天上午9時騎自行車離開家,15時回家,他離家的距離與時間的變化情況如圖所示.

110時時他離家 ,他到達離家最遠的地方時是 時,此時離家 ;

2)他可能在哪段時間內(nèi)休息,并吃午餐?

3)他在出行途中,哪段時間內(nèi)騎車速度最快,速度是多少?

【答案】11012,30;(212時至13時;(313時至15時速度最快,15 每小時.

【解析】

1)首先找到時間為10時的點,然后根據(jù)圖象即可確定10時他離家的距離,再根據(jù)圖象找到離家最遠的距離,由此即可確定他到達離家最遠的地方是什么時間,離家多遠;

2)如果休息,那么距離沒有增加,由此即可確定在哪段時間休息,并吃午餐;

3)計算出行途中的幾個時間段的速度,比較即得答案.

解:(1)由圖象可得,10時時他離家10,他到達離家最遠的地方時是12時,此時離家30;故答案為1012,30;

2)由圖象可知,12:0013:00離家的距離沒變且時間較長,所以他可能在12時至13時休息,并吃午餐;

3)在9時至10時,速度是10km/時,在11時至12時,速度是13km/時,在13時至15時,速度是15km/時,所以他在出行途中,13時至15時速度最快,為15km/.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級舉行畢業(yè)典禮,需要從九(1)班的2名男生1名女生、九(2)的1名男生1名女生共5人中選出2名主持人.

1)用樹形圖或列表法列出所有可能情形;

2)求2名主持人來自不同班級的概率;

3)求2名主持人恰好11女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為測量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.

(1)求AB段山坡的高度EF;

(2)求山峰的高度CF(結(jié)果保留根式).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在防疫新冠狀病毒期間,市民對醫(yī)用口罩的需求越來越大.某藥店第一次用2000元購進醫(yī)用口罩若干個,第二次又用2000元購進該款口罩,但第二次每個口罩的進價是第一次進價的1.25倍,購進的數(shù)量比第一次少200.

⑴求第一次和第二次分別購進的醫(yī)用口罩數(shù)量為多少個?

⑵藥店第一次購進口罩后,先以每個3元的價格出售,賣出了a個后購進第二批同款罩,由于進價提高了,藥店將口罩的售價也提升至每個3.5元繼續(xù)銷售賣出了b個后,兩次共收入4800.因當?shù)蒯t(yī)院醫(yī)療物資緊缺,藥店決定將剩余的口罩全部捐贈給醫(yī)院.請問藥店捐贈口罩至少有多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCABC是以點O為位似中心的位似圖形,它們的頂點都在正方形網(wǎng)格的格點上.

(1)畫出位似中心O;

(2)ABCABC的相似比為__________,面積比為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料

在數(shù)軸上4所對的兩點之間的距離:

在數(shù)軸上3所對的兩點之間的距離;

在數(shù)軸上所對的兩點之間的距離:在數(shù)軸上點AB分別表示數(shù)a、b,則A、B兩點之間的距離

依據(jù)材料知識解答下列問題

數(shù)軸上表示的兩點之間的距離是______,數(shù)軸上表示數(shù)x3的兩點之間的距離表示為______;

七年級研究性學習小組進行如下探究:

請你在草稿紙上面出數(shù)軸當表示數(shù)x的點在2之間移動時,的值總是一個固定的值為:______,式子的最小值是______

請你在草稿紙上畫出數(shù)軸,當x等于______時,的值最小,且最小值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB,C,D為矩形的四個頂點,AB=16 cm,AD=6 cm,動點PQ分別從點A,C同時出發(fā),點P以3 cm/s的速度向點B移動,一直到點B為止,點Q以2 cm/s的速度向點D移動,當點P停止運動時,點Q也停止運動.問:

(1)P,Q兩點從開始出發(fā)多長時間時,四邊形PBCQ的面積是33 cm2?

(2)PQ兩點從開始出發(fā)多長時間時,點P與點Q之間的距離是10 cm?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點EF分別是AD、BC的中點,分別連接BE、DF、BD

1)求證:AEB≌△CFD;

2)當ABD滿足什么條件時,四邊形EBFD是菱形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】成都至西安的高速鐵路(簡稱西成高鐵)全線正式運營,至此,從成都至西安有兩條鐵路線可選擇:一條是普通列車行駛線路(寶成線),全長825千米;另一條是高速列車行駛線路(西成高鐵),全長660千米,高速列車在西成高鐵線上行駛的平均速度是普通列車在寶成線上行駛的平均速度的3倍,乘坐普通列車從成都至西安比乘坐高速列車從成都至西安多用11小時,則高速列車在西成高鐵上行駛的平均速度是多少?

查看答案和解析>>

同步練習冊答案