【題目】如圖所示,已知平行四邊形ABCD,對角線AC,BD相交于點OOBC=OCB

(1)求證:平行四邊形ABCD是矩形;

(2)請?zhí)砑右粋條件使矩形ABCD為正方形.

【答案】(1)證明見解析;(2)AB=AD(或ACBD答案不唯一).

【解析】試題分析:(1)根據(jù)平行四邊形對角線互相平分可得OA=OC,OB=OD,根據(jù)等角對等邊可得OB=OC,然后求出AC=BD,再根據(jù)對角線相等的平行四邊形是矩形證明;

(2)根據(jù)正方形的判定方法添加即可.

試題解析:解:(1)∵四邊形ABCD是平行四邊形,OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四邊形ABCD是矩形;

(2)AB=AD(或ACBD答案不唯一).

理由:四邊形ABCD是矩形,又AB=AD,∴四邊形ABCD是正方形.

或:四邊形ABCD是矩形,又ACBD,∴四邊形ABCD是正方形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點EBC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是( 。

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

(1)4x=5x﹣5

(2)4x+3(2x﹣3)=12﹣(x﹣4)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2013年5月23日起,我市將對行人闖紅燈分三檔進行處罰,九年級數(shù)學研究學習小組在某十字路口隨機調查部分市民對該法歸的了解情況,統(tǒng)計結果后繪制了如圖的三副不完整的統(tǒng)計圖,請結合圖中相關數(shù)據(jù)回答下列問題.

得分

A

50<n≤60

B

60<n≤70

C

70<n≤80

D

80<n≤90

E

90<n≤100


(1)本次共調查的人數(shù)為
(2)補全頻數(shù)分布圖;
(3)在扇形統(tǒng)計圖中,“B”所在的扇形的圓心角的度數(shù)為;
(4)若在這一周里,該路口共有2000人通過,則可估計得分在80以上的人數(shù)大約為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,鐵路上A,B兩點相距25 km,C,D為兩村莊,DAAB于點A,CBAB于點B,已知DA=15 km,CB=10 km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等,E站應建在離A站多少千米處?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,AC是對角線,今有較大的直角三角板,一邊始終經(jīng)過點B,直角頂點P在射線AC上移動,另一邊交DC于點Q.

(1)如圖①,當點Q在DC邊上時,猜想并寫出PB與PQ所滿足的數(shù)量關系,并加以證明;

(2)如圖②,當點Q落在DC的延長線上時,猜想并寫出PB與PQ滿足的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖數(shù)軸上點A對應的有理數(shù)為20,P以每秒2個單位長度的速度從點A出發(fā)Q以每秒4個單位長度的速度從原點O出發(fā),P,Q兩點同時向數(shù)軸正方向運動,設運動時間為t.

(1)當t=2P,Q兩點對應的有理數(shù)分別是____,____,PQ____

(2)當PQ=10,t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在5×8的網(wǎng)格中,每個小正方形的邊長均為1,線段AB的頂點均在小正方形的頂點上.
(1)畫出等腰直角△ABC,點C在格點上;
(2)畫出有一個銳角的正切值是2的直角△ABD,點D在格點上;
(3)在(1)(2)的條件下,連接CD,請直接寫出△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點CCF平行于BAPQ于點F,連接AF

(1)求證:AED≌△CFD;

(2)求證:四邊形AECF是菱形.

(3)若AD=3,AE=5,則菱形AECF的面積是多少?

查看答案和解析>>

同步練習冊答案