【題目】如圖所示,已知平行四邊形ABCD,對角線AC,BD相交于點O,OBC=OCB

(1)求證:平行四邊形ABCD是矩形;

(2)請?zhí)砑右粋條件使矩形ABCD為正方形.

【答案】(1)證明見解析;(2)AB=AD(或ACBD答案不唯一).

【解析】試題分析:(1)根據(jù)平行四邊形對角線互相平分可得OA=OC,OB=OD,根據(jù)等角對等邊可得OB=OC,然后求出AC=BD,再根據(jù)對角線相等的平行四邊形是矩形證明;

(2)根據(jù)正方形的判定方法添加即可.

試題解析:解:(1)∵四邊形ABCD是平行四邊形,OA=OCOB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四邊形ABCD是矩形;

(2)AB=AD(或ACBD答案不唯一).

理由:四邊形ABCD是矩形,又AB=AD,∴四邊形ABCD是正方形.

或:四邊形ABCD是矩形,又ACBD,∴四邊形ABCD是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點EBC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是(  )

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)4x=5x﹣5

(2)4x+3(2x﹣3)=12﹣(x﹣4)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年5月23日起,我市將對行人闖紅燈分三檔進(jìn)行處罰,九年級數(shù)學(xué)研究學(xué)習(xí)小組在某十字路口隨機調(diào)查部分市民對該法歸的了解情況,統(tǒng)計結(jié)果后繪制了如圖的三副不完整的統(tǒng)計圖,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題.

得分

A

50<n≤60

B

60<n≤70

C

70<n≤80

D

80<n≤90

E

90<n≤100


(1)本次共調(diào)查的人數(shù)為;
(2)補全頻數(shù)分布圖;
(3)在扇形統(tǒng)計圖中,“B”所在的扇形的圓心角的度數(shù)為;
(4)若在這一周里,該路口共有2000人通過,則可估計得分在80以上的人數(shù)大約為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,鐵路上A,B兩點相距25 km,C,D為兩村莊,DAAB于點A,CBAB于點B,已知DA=15 km,CB=10 km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等,E站應(yīng)建在離A站多少千米處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,AC是對角線,今有較大的直角三角板,一邊始終經(jīng)過點B,直角頂點P在射線AC上移動,另一邊交DC于點Q.

(1)如圖①,當(dāng)點Q在DC邊上時,猜想并寫出PB與PQ所滿足的數(shù)量關(guān)系,并加以證明;

(2)如圖②,當(dāng)點Q落在DC的延長線上時,猜想并寫出PB與PQ滿足的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上點A對應(yīng)的有理數(shù)為20,P以每秒2個單位長度的速度從點A出發(fā),Q以每秒4個單位長度的速度從原點O出發(fā),P,Q兩點同時向數(shù)軸正方向運動,設(shè)運動時間為t.

(1)當(dāng)t=2,PQ兩點對應(yīng)的有理數(shù)分別是____,____PQ____;

(2)當(dāng)PQ=10,t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在5×8的網(wǎng)格中,每個小正方形的邊長均為1,線段AB的頂點均在小正方形的頂點上.
(1)畫出等腰直角△ABC,點C在格點上;
(2)畫出有一個銳角的正切值是2的直角△ABD,點D在格點上;
(3)在(1)(2)的條件下,連接CD,請直接寫出△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點CCF平行于BAPQ于點F,連接AF

(1)求證:AED≌△CFD;

(2)求證:四邊形AECF是菱形.

(3)若AD=3,AE=5,則菱形AECF的面積是多少?

查看答案和解析>>

同步練習(xí)冊答案