【題目】某校實(shí)施課程改革,為初三學(xué)生設(shè)置了A,B,C,D,E,F(xiàn)共六門不同的拓展性課程,現(xiàn)隨機(jī)抽取若干學(xué)生進(jìn)行了“我最想選的一門課”調(diào)查,并將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表(不完整)
選修課 | A | B | C | D | E | F |
人數(shù) | 20 | 30 |
根據(jù)圖標(biāo)提供的信息,下列結(jié)論錯(cuò)誤的是( )
A.這次被調(diào)查的學(xué)生人數(shù)為200人
B.扇形統(tǒng)計(jì)圖中E部分扇形的圓心角為72°
C.被調(diào)查的學(xué)生中最想選F的人數(shù)為35人
D.被調(diào)查的學(xué)生中最想選D的有55人
【答案】D
【解析】解:A、這次被調(diào)查的學(xué)生人數(shù)為 =200人,故此選項(xiàng)正確; B、A課程百分比為 ×100%=10%,D課程百分比為 ×100%=25%,
則E所對(duì)扇形圓心角度數(shù)為360°×(1﹣10%﹣15%﹣12.5%﹣25%﹣17.5%)=72°,故此選項(xiàng)正確;
C、被調(diào)查的學(xué)生中最想選F的人數(shù)為200×17.5%=35人,故此選項(xiàng)正確;
D、被調(diào)查的學(xué)生中最想選D的有200×25%=50人,故此選項(xiàng)錯(cuò)誤;
故選:D.
由B課程的人數(shù)及其百分比可得總?cè)藬?shù),即可判斷A選項(xiàng);先求得E課程所占百分比,再乘以360度即可判斷B;總?cè)藬?shù)乘以D、F的百分比即可求得人數(shù),從而判斷出C、D選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在長(zhǎng)方形ABCD中,點(diǎn)P是CD中點(diǎn),點(diǎn)Q從點(diǎn)A開始,沿著A→B→C→P的路線勻速運(yùn)動(dòng),設(shè)△APQ的面積是y,點(diǎn)Q經(jīng)過(guò)的路線長(zhǎng)度為x,圖2坐標(biāo)系中折線OEFG表示y與x之間的函數(shù)關(guān)系,點(diǎn)E的坐標(biāo)為(4,6),則點(diǎn)G的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2﹣bx+2(a≠0)圖象的頂點(diǎn)在第二象限,且過(guò)點(diǎn)(1,0),則a的取值范圍是;若a+b的值為非零整數(shù),則b的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點(diǎn)為D,E,F,若AD、BE的長(zhǎng)為方程的兩個(gè)根,則△ABC的周長(zhǎng)為 ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線分別交x軸、y軸于A、B兩點(diǎn),點(diǎn)P是線段AB上的一動(dòng)點(diǎn),以P為圓心,r為半徑畫圓.
(1)若點(diǎn)P的橫坐標(biāo)為﹣3,當(dāng)⊙P與x軸相切時(shí),則半徑r為 ,此時(shí)⊙P與y軸的位置關(guān)系是 .(直接寫結(jié)果)
(2)若,當(dāng)⊙P與坐標(biāo)軸有且只有3個(gè)公共點(diǎn)時(shí),求點(diǎn)P的坐標(biāo).
(3)如圖2,當(dāng)圓心P與A重合,時(shí),設(shè)點(diǎn)C為⊙P上的一個(gè)動(dòng)點(diǎn),連接OC,將線段OC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到線段OD,連接AD,求AD長(zhǎng)的最值并直接寫出對(duì)應(yīng)的點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得CF,連接EF.
(1)補(bǔ)充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】樂樂是一名健步運(yùn)動(dòng)的愛好者,她用手機(jī)軟件記錄了某個(gè)月(30天)每天健步走的步數(shù)(單位:萬(wàn)步),并將記錄結(jié)果繪制成了如圖所示的統(tǒng)計(jì)圖(不完整).
(1)若樂樂這個(gè)月平均每天健步走的步數(shù)為1.32萬(wàn)步,試求她走1.3萬(wàn)步和1.5萬(wàn)步的天數(shù);
(2)求這組數(shù)據(jù)中的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線AB∥CD,直線EF與AB,CD分別相交于點(diǎn)E,F(xiàn).
(1)如圖1,若∠1=60°,求∠2,∠3的度數(shù).
(2)若點(diǎn)P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),連結(jié)PE,PF,探索∠EPF,∠PEB,∠PFD三個(gè)角之間的關(guān)系.
①當(dāng)點(diǎn)P在圖(2)的位置時(shí),可得∠EPF=∠PEB+∠PFD請(qǐng)閱讀下面的解答過(guò)程并填空(理由或數(shù)學(xué)式)
解:如圖2,過(guò)點(diǎn)P作MN∥AB
則∠EPM=∠PEB(_______)
∵AB∥CD(已知)MN∥AB(作圖)
∴MN∥CD(_______)
∴∠MPF=∠PFD (_______)
∴_____=∠PEB+∠PFD(等式的性質(zhì))
即:∠EPF=∠PEB+∠PFD
②拓展應(yīng)用,當(dāng)點(diǎn)P在圖3的位置時(shí),此時(shí)∠EPF=80°,∠PEB=156°,則∠PFD=_____度.
③當(dāng)點(diǎn)P在圖4的位置時(shí),請(qǐng)直接寫出∠EPF,∠PEB,∠PFD三個(gè)角之間關(guān)系_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著科技的發(fā)展,電動(dòng)汽車的性能得到顯著提高,某市對(duì)市場(chǎng)上電動(dòng)汽車的性能進(jìn)行隨機(jī)抽樣調(diào)查,現(xiàn)隨機(jī)抽取部分電動(dòng)汽車,記錄其一次充電后行駛的里程數(shù),并將抽查數(shù)據(jù)繪制成如下頻數(shù)分布直方表和條形統(tǒng)計(jì)圖.
根據(jù)以上信息回答下列問(wèn)題:
組別 | 行駛里程x(千米) | 頻數(shù)(臺(tái)) | 頻率 |
A | x<200 | 18 | 0.15 |
B | 200≤x<210 | 36 | a |
C | 210≤x<220 | 30 | 0.25 |
D | 220≤x<230 | b | 0.20 |
E | x≥230 | 12 | 0.10 |
根據(jù)以上信息回答下列問(wèn)題:
(1)填空:a= , b=;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該市市場(chǎng)上的電動(dòng)汽車有2000臺(tái),請(qǐng)你估計(jì)電動(dòng)汽車一次充電后行駛的里程數(shù)在220千米及以上的臺(tái)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com