【題目】如圖,已知點(diǎn)B、E、C、F在一條直線上,AB=DF,AC=DE,A=D.

(1)求證:ACDE;

(2)BF=13,EC=5,求BC的長(zhǎng).

【答案】(1)證明見解析;(2)4.

【解析】試題分析:(1)、首先證明△ABC≌△DFE可得∠ACE=∠DEF,進(jìn)而可得AC∥DE;(2)、根據(jù)△ABC≌△DFE可得BC=EF,利用等式的性質(zhì)可得EB=CF,再由BF=13,EC=5進(jìn)而可得EB的長(zhǎng),然后可得答案.

試題解析:(1)、在△ABC△DFE, ∴△ABC≌△DFESAS), ∴∠ACE=∠DEF, ∴AC∥DE

(2)、∵△ABC≌△DFE, ∴BC=EF, ∴CB﹣EC=EF﹣EC∴EB=CF, ∵BF=13EC=5,

∴EB=4, ∴CB=4+5=9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解九年級(jí)學(xué)生體育測(cè)試成績(jī)情況,以九年(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖,按A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:(說明:A級(jí):90分﹣100分;B級(jí):75分﹣89分;C級(jí):60分﹣74分;D級(jí):60分以下)

(1)寫出D級(jí)學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比為 ,C級(jí)學(xué)生所在的扇形圓心角的度數(shù)為 ;

(2)該班學(xué)生體育測(cè)試成績(jī)的中位數(shù)落在等級(jí) 內(nèi);

(3)若該校九年級(jí)學(xué)生共有500人,請(qǐng)你估計(jì)這次考試中A級(jí)和B級(jí)的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小林在某商店購(gòu)買商品A,B共三次,只有其中一次購(gòu)買時(shí),商品A,B同時(shí)打折,其余兩次均按標(biāo)價(jià)購(gòu)買,三次購(gòu)買商品A、B的數(shù)量和費(fèi)用如表所示,

購(gòu)買商品A的數(shù)量/個(gè) 

 購(gòu)買商品B的數(shù)量/個(gè)

購(gòu)買總費(fèi)用/元 

第一次購(gòu)物

6

5

1140

第二次購(gòu)物

3

7

1110

第三次購(gòu)物

9

8

1062

(1)在這三次購(gòu)物中,第幾次購(gòu)物打了折扣;
(2)求出商品A、B的標(biāo)價(jià);
(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于四舍五入得到的近似數(shù)1.50萬(wàn),下列說法中正確的是(( 。

A. 該近似數(shù)精確到百分位 B. 該近似數(shù)精確到千位 C. 該近似數(shù)精確到十分位 D. 該近似數(shù)精確到百位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡(jiǎn),再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中 a=﹣1,b=﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、b兩數(shù)的平方和減去ab的乘積的2倍,用代數(shù)式表示為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,連接四邊形ABCD各邊中點(diǎn),得到四邊形EFGH,還要添加 條件,才能保證四邊形EFGH是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為4,將此正方形置于平面直角坐標(biāo)系中,使AB邊落在X軸的正半軸上,且A點(diǎn)的坐標(biāo)是(1,0).

(1)直線經(jīng)過點(diǎn)C,且與x軸交與點(diǎn)E,求四邊形AECD的面積;

(2)若直線l經(jīng)過點(diǎn)E,且將正方形ABCD分成面積相等的兩部分,求直線l的解析式;

(3)若直線l1經(jīng)過點(diǎn)F(﹣,0),且與直線y=3x平行,將(2)中直線l沿著y軸向上平移個(gè)單位交軸x于點(diǎn)M,交直線l1于點(diǎn)N,求NMF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡(jiǎn),后求值:[(2xy﹣1)(1﹣2xy)+1]÷4xy,其中x=1,y=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案