【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F.切點(diǎn)為G,連接AG交CD于K.
(1)求證:KE=GE;
(2)若KG2=KDGE,試判斷AC與EF的位置關(guān)系,并說(shuō)明理由;
(3)在(2)的條件下,若sinE= ,AK=2 ,求FG的長(zhǎng).
【答案】
(1)解:如答圖1,連接OG.
∵EG為切線,∴∠KGE+∠OGA=90°,
∵CD⊥AB,∴∠AKH+∠OAG=90°,
又OA=OG,∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
(2)解:AC∥EF,理由為:
連接GD,如答圖2所示.
∵KG2=KDGE,即 ,
∴ ,又∠KGE=∠GKE,
∴△GKD∽△EGK,
∴∠E=∠AGD,又∠C=∠AGD,
∴∠E=∠C,
∴AC∥EF;
(3)解:連接OG,OC,如答圖3所示.
sinE=sin∠ACH= ,設(shè)AH=3t,則AC=5t,CH=4t,
∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK﹣CH=t.
在Rt△AHK中,根據(jù)勾股定理得AH2+HK2=AK2,
即(3t)2+t2=(2 )2,解得t= ,
設(shè)⊙O半徑為r,在Rt△OCH中,OC=r,OH=r﹣3t,CH=4t,
由勾股定理得:OH2+CH2=OC2,
即(r﹣3t)2+(4t)2=r2,解得r= t= .
∵EF為切線,∴△OGF為直角三角形,
在Rt△OGF中,OG=r= ,tan∠OFG=tan∠CAH= = ,
∴FG= = = .
【解析】(1)如答圖1,連接OG.根據(jù)切線性質(zhì)及CD⊥AB,可以推出連接∠KGE=∠AKH=∠GKE,根據(jù)等角對(duì)等邊得到KE=GE;(2)AC與EF平行,理由為:如答圖2所示,連接GD,由∠KGE=∠GKE,及KG2=KDGE,利用兩邊對(duì)應(yīng)成比例且?jiàn)A角相等的兩三角形相似可得出△GKD與△EKG相似,又利用同弧所對(duì)的圓周角相等得到∠C=∠AGD,可推知∠E=∠C,從而得到AC∥EF;(3)如答圖3所示,連接OG,OC.首先求出圓的半徑,根據(jù)勾股定理與垂徑定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的長(zhǎng)度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(1,5),B(3,﹣1)兩點(diǎn),在x軸上取一點(diǎn)M,使AM﹣BM取得最大值時(shí),則M的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2﹣(m+2)x+(2m﹣1)=0.
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有七張正面分別標(biāo)有數(shù)字﹣3,﹣2,﹣1,0,1,2,3的卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中隨機(jī)抽取一張,記卡片上的數(shù)字為a,則使關(guān)于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有兩個(gè)不相等的實(shí)數(shù)根,且以x為自變量的二次函數(shù)y=x2﹣(a2+1)x﹣a+2的圖象不經(jīng)過(guò)點(diǎn)(1,O)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形紙片ABCD中,AB=8cm,AD=6cm,按下列步驟進(jìn)行裁剪和拼圖:
第一步:如圖①,在線段AD上任意取一點(diǎn)E,沿EB,EC剪下一個(gè)三角形紙片EBC(余下部分不再使用);
第二步:如圖②,沿三角形EBC的中位線GH將紙片剪成兩部分,并在線段GH上任意取一點(diǎn)M,線段BC上任意取一點(diǎn)N,沿MN將梯形紙片GBCH剪成兩部分;
第三步:如圖③,將MN左側(cè)紙片繞G點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)180°,使線段GB與GE重合,將MN右側(cè)紙片繞H點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)180°,使線段HC與HE重合,拼成一個(gè)與三角形紙片EBC面積相等的四邊形紙片.
(注:裁剪和拼圖過(guò)程均無(wú)縫且不重疊)
則拼成的這個(gè)四邊形紙片的周長(zhǎng)的最小值為cm,最大值為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是BC延長(zhǎng)線上一點(diǎn),E是BD垂直平分線與AB的交點(diǎn),DE交AC于點(diǎn)F.求證:點(diǎn)E在AF的垂直平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系中有一點(diǎn).
(1)點(diǎn)M到y軸的距離為1時(shí),M的坐標(biāo)?
(2)點(diǎn)且MN//x軸時(shí),M的坐標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次機(jī)器人測(cè)試中,要求機(jī)器人從A出發(fā)到達(dá)B處.如圖1,已知點(diǎn)A在O的正西方600cm處,B在O的正北方300cm處,且機(jī)器人在射線AO及其右側(cè)(AO下方)區(qū)域的速度為20cm/秒,在射線AO的左側(cè)(AO上方)區(qū)域的速度為10cm/秒.
(參考數(shù)據(jù): ≈1.414, ≈1.732, ≈2.236, ≈2.449)
(1)分別求機(jī)器人沿A→O→B路線和沿A→B路線到達(dá)B處所用的時(shí)間(精確到秒);
(2)若∠OCB=45°,求機(jī)器人沿A→C→B路線到達(dá)B處所用的時(shí)間(精確到秒);
(3)如圖2,作∠OAD=30°,再作BE⊥AD于E,交OA于P.試說(shuō)明:從A出發(fā)到達(dá)B處,機(jī)器人沿A→P→B路線行進(jìn)所用時(shí)間最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在y軸上,位于原點(diǎn)的下方,且距離原點(diǎn)3個(gè)單位長(zhǎng)度的點(diǎn)的坐標(biāo)是_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com