【題目】已知△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊,方程是關(guān)于x的一元二次方程.
(1)判斷方程的根的情況為 (填序號(hào));
①方程有兩個(gè)相等的實(shí)數(shù)根; ②方程有兩個(gè)不相等的實(shí)數(shù)根;
③方程無(wú)實(shí)數(shù)根; ④無(wú)法判斷
(2)如圖,若△ABC內(nèi)接于半徑為2的⊙O,直徑BD⊥AC于點(diǎn)E,且∠DAC=60°,求方程的根;
(3)若是方程的一個(gè)根,△ABC的三邊a、b、c的長(zhǎng)均為整數(shù),試求a、b、c的值.
【答案】(1)②;(2),;(3)a=2,b=3,c=2
【解析】
(1)先計(jì)算判別式的值得到△=b2+4ac,由于a、b、c為三角形的邊長(zhǎng),則△>0,然后根據(jù)判別式的意義判斷方程根的情況;
(2)連接OA,如圖,根據(jù)垂徑定理,由BD⊥AC得到,弧AB=弧CB,弧AD=弧CD,再利用圓心角、弧、弦的關(guān)系得到AB=CB,利用圓周角定理得到∠ABD=∠DAC=60°,則可判斷△OAB為等邊三角形,得到AB=OB=2,AE=OB=,所以AC=2AE=2,即a=2,b=2,c-2,然后利用求根公式法解方程2x2+2x-2=0;
(3)根據(jù)一元二次方程根的定義,把代入ax2+bx-c=0后變形得到,易得b<4,利用a、b、c的長(zhǎng)均為整數(shù)得到b=1,2,3,然后分類討論:當(dāng)b=1時(shí),ac=12,;當(dāng)b=2時(shí),ac=8;當(dāng)b=3時(shí),ac=4,再利用整數(shù)的整除性求出a、c的值,然后利用三角形三邊的關(guān)系確定滿足條件的a、b、c的值.
(1)△=b2-4a(-c)=b+4ac,
∵a、b、c分別為∠A、∠B、∠C的對(duì)邊,即a、b、c都是正數(shù),
∴△>0,
∴方程有兩個(gè)不相等的實(shí)數(shù)根;
故選②;
(2)連接OA,如圖,
∵BD⊥AC,
∴弧AB=弧CB,弧AD=弧CD,
∴AB=CB,∠ABD=∠DAC=60°,
∴△OAB為等邊三角形,
∴AB=OB=2,
∴AE=OB=
∴AC=2AE=,
即a=2,b=,c=2,
方程變形為,
整理得:,
解得,;
(3)把代入得:
整理得:,則4-b>0,
即b<4,
∵a、b、c的長(zhǎng)均為整數(shù),
∴b=1,2,3,
當(dāng)b=1時(shí),ac=12,則a=1,c=12;a=2,c=6;a=3,c=4;a=6,c=2;a=12,c=1,都不符合三角形三邊的關(guān)系,舍去;
當(dāng)b=2時(shí),ac=8,則a=1,c=8;a=2,c=4;a=4,c=2;a=8,c=1,都不符合三角形三邊的關(guān)系,舍去;
當(dāng)b=3時(shí),ac=4,則a=1,c=4;a=2,c=2;a=4,c=1,其中a=2,c=2符合三角形三邊的關(guān)系,
∴a=2,b=3,c=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到,與交于點(diǎn),可推出結(jié)論:
問(wèn)題解決:如圖,在中,,,.點(diǎn)是內(nèi)一點(diǎn),則點(diǎn)到三個(gè)頂點(diǎn)的距離和的最小值是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸正半軸相交,其頂點(diǎn)坐標(biāo)為,下列結(jié)論:①;②;③;④方程有兩個(gè)相等的實(shí)數(shù)根,其中正確的結(jié)論是________.(只填序號(hào)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一面靠墻的空地上用長(zhǎng)24m的籬笆,圍成中間隔有兩道籬笆的長(zhǎng)方形花圃,設(shè)花圃的一邊AB為x(m),面積S(m2).
(1)求S與x之間的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)若墻的最大可用長(zhǎng)度為8m,求圍成花圃的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過(guò)網(wǎng)格的交點(diǎn)A、B、C.
(1)請(qǐng)完成如下操作:
①以點(diǎn)O為坐標(biāo)原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;、诟鶕(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD.
(2)請(qǐng)?jiān)冢?/span>1)的基礎(chǔ)上,完成下列填空:
①寫出點(diǎn)的坐標(biāo):C 、D ;
②⊙D的半徑= (結(jié)果保留根號(hào));
③若E(7,0),試判斷直線EC與⊙D的位置關(guān)系,并說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)I為△ABC的內(nèi)心,連AI交△ABC的外接圓于點(diǎn)D,若AI=2CD,點(diǎn)E為弦AC的中點(diǎn),連接EI,IC,若IC=6,ID=5,則IE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:
(2)已知:如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別是△ABC各邊的中點(diǎn),求證:四邊形AEDF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大樓高30m,遠(yuǎn)處有一塔BC,某人在樓底A處測(cè)得塔頂?shù)难鼋菫?/span>60°,爬到樓頂D測(cè)得塔頂?shù)难鼋菫?/span>30°.
求:(1)∠DBA的度數(shù);(2)塔高BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正五邊形ABCDE,AF∥CD交DB的延長(zhǎng)線于點(diǎn)F,交DE的延長(zhǎng)線于點(diǎn)G.
(1)寫出圖中所有的等腰三角形;
(2)求證:∠G=2∠F.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com