【題目】如圖,給出下列四個(gè)條件:① ∠BAC=∠DCA;② ∠DAC=∠BCA;③ ∠ABD=∠CDB;④ ∠ADB=∠CBD,其中能使 ADBC的條件是(

A.①②B.③④C.②④D.①③④

【答案】C

【解析】

欲證ADBC,在圖中發(fā)現(xiàn)AD、BC被一直線所截,故可按同位角相等、內(nèi)錯(cuò)角相等、同旁內(nèi)角互補(bǔ),兩直線平行補(bǔ)充條件.

解:①∠BAC=DCA,可得到ABCD,不能判斷ADBC平行,故錯(cuò)誤;
②∠DAC=BCA,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可得ADBC,故正確;
③∠ABD=CDB,可得到ABCD,不能判斷ADBC平行,故錯(cuò)誤;
④∠ADB=CBD,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可得ADBC,故正確,
故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(6,c)三點(diǎn),其中a,b,c滿足關(guān)系式|a-2|+(b-3)2+=0,

(1)求A.B.C的坐標(biāo);

(2)求三角形ABC的面積;

(3)在y軸上是否存在點(diǎn)P,使三角形APC的面積與三角形ABC的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某種車的耗油量,我們對這種車在高速公路以100km/h的速度做了耗油試驗(yàn),并把試驗(yàn)的數(shù)據(jù)記錄下來,制成下表:

汽車行駛時(shí)間t(h)

0

1

2

3

油箱剩余油量Q(L)

100

94

88

82

1)根據(jù)上表的數(shù)據(jù),你能用t表示Q嗎?試一試;

2)汽車行駛6h后,油箱中的剩余油量是多少?

3)若汽車油箱中剩余油量為52L,則汽車行駛了多少小時(shí)?

4)若該種汽車油箱只裝了36L汽油,汽車以100km/h的速度在一條全長700公里的高速公路上勻速行駛,請問它在中途不加油的情況下能從高速公路起點(diǎn)開到高速公路終點(diǎn)嗎,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,扇形OMN與正方形ABCD,半徑OM與邊AB重合,弧MN的長等于AB的長,已知AB=2,扇形OMN沿著正方形ABCD逆時(shí)針滾動到點(diǎn)O首次與正方形的某頂點(diǎn)重合時(shí)停止,則點(diǎn)O經(jīng)過的路徑長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,“天貓”、“京東”、“唯品會”等網(wǎng)絡(luò)大型‘:賣場”的日趨完善,網(wǎng)購成了現(xiàn)代人生活的一部分。與此同時(shí),快遞行業(yè)也隨之高速發(fā)展.

(1)如果每名快遞員每月最多完成快遞投遞量相同,且每月投遞完l2萬件快遞量需要快遞員比投遞完12.6萬件快遞置需要快遞員人數(shù)少1人,求每名快遞員每月最多完成快遞投遞量是多少萬件;

(2)我市某小型快遞公司原有員工20名,隨著快遞投遞任務(wù)的加大,該快遞公司投入部分資金用于改善投遞條件,改善后,每人每月投遞快遞任務(wù)量可增加,同時(shí)該快遞公司又增加了20%的快遞員,從而預(yù)計(jì)每月最大可完成投遞快遞任務(wù)l5.12萬件,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若實(shí)數(shù)可以表示成兩個(gè)連續(xù)自然數(shù)的倒數(shù)差,例如,,所以是第1個(gè)“l階倒差數(shù)”倒差數(shù)”,,所以是第2個(gè)“l階倒差數(shù)”,,所以是第3個(gè)“l階倒差數(shù)”……,即,那么我們稱是第個(gè)“l階倒差數(shù)”;同理,那么我們稱為第個(gè)“2階倒差數(shù)”。

(l)判斷 ______(填是或不是)“1階倒差數(shù)”,第5個(gè)“2階倒差數(shù)”是______

(2)均是由兩連續(xù)奇數(shù)組成的“2階倒差數(shù)”,且.求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是8×8的正方形網(wǎng)格,每個(gè)小方格都是邊長為1的正方形,A、B是格點(diǎn)(網(wǎng)格線的交點(diǎn)).以網(wǎng)格線所在直線為坐標(biāo)軸,在網(wǎng)格中建立平面直角坐標(biāo)系xOy,使點(diǎn)A坐標(biāo)為(﹣2,4).

(1)在網(wǎng)格中,畫出這個(gè)平面直角坐標(biāo)系;

(2)在第二象限內(nèi)的格點(diǎn)上找到一點(diǎn)C,使A、B、C三點(diǎn)組成以AB為底邊的等腰三角形,且腰長是無理數(shù),則點(diǎn)C的坐標(biāo)是   ;并畫出△ABC關(guān)于y軸對稱的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD,點(diǎn)E在邊AD上,連接BE將△ABE沿BE翻折,得到△MBE,且點(diǎn)MCD中點(diǎn),取BM中點(diǎn)N,點(diǎn)P為線段BE上一動點(diǎn),連接PNPM,若AD長為2,則PM+PN的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A、∠B為銳角,且|tanA﹣1|+( ﹣cosB)2=0,則∠C=°.

查看答案和解析>>

同步練習(xí)冊答案