【題目】將矩形紙片ABCD按如圖所示的方式折疊,恰好得到菱形AECF.若AB3,則菱形AECF的面積為_____

【答案】

【解析】

根據(jù)菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通過折疊的性質(zhì),結(jié)合直角三角形勾股定理求得BC的長,則利用菱形的面積公式即可求解.

解:∵四邊形AECF是菱形,AB3,

∴設(shè)BEx,則AE3x,CE3x,

∵四邊形AECF是菱形,

∴∠FCO=∠ECO

∵∠ECO=∠ECB,

∴∠ECO=∠ECB=∠FCO30°,

2BECE,

CE2x

2x3x,

解得:x1,

CE2,利用勾股定理得出:

BC2+BE2EC2

BC

又∵AEABBE312,

則菱形的面積=AEBC

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架長2.5米的梯子AB斜靠在豎直的墻AC上,這時B到墻AC的距離為0.7米.

(1)若梯子的頂端A沿墻AC下滑0.9米至A1處,求點B向外移動的距離BB1的長;

(2)若梯子從頂端A處沿墻AC下滑的距離是點B向外移動的距離的一半,試求梯子沿墻AC下滑的距離是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中考體育測試前,某區(qū)教育局為了了解選報引體向上的初三男生的成績情況,隨機抽測了本區(qū)部分選報引體向上項目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖:

請你根據(jù)圖中的信息,解答下列問題:

)寫出扇形圖中__________,并補全條形圖.

)在這次抽測中,測試成績的眾數(shù)和中位數(shù)分別是__________、__________

)該區(qū)體育中考選報引體向上的男生共有人,如果體育中考引體向上達個以上(含個)得滿分,請你估計該區(qū)體育中考中選報引體向上的男生能獲得滿分的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

,,

由以上三個等式相加,可得

.

讀完以上材料,請你計算下列各題:

1(寫出過程);

2__________________________(直接寫出答案);

3_____________________(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點EF分別為邊BC、CD的中點,AF、DE相交于點G,則可得結(jié)論:①AFDE,②AFDE(不須證明).

1)如圖,若點E、F不是正方形ABCD的邊BC、CD的中點,但滿足CEDF,則上面的結(jié)論、是否仍然成立;(請直接回答“成立”或“不成立”)

2)如圖,若點E、F分別在正方形ABCD的邊CB的延長線和DC的延長線上,且CEDF,此時上面的結(jié)論、是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由.

3)如圖,在(2)的基礎(chǔ)上,連接AEEF,若點M、NP、Q分別為AEEF、FDAD的中點,請先判斷四邊形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一種,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,點A、B的坐標分別為(1,4)和(3,0),點Cy軸上的一個動點,且AB、C三點不在同一條直線上,當△ABC的周長最小時,點C的坐標是

A.00B.0,1C.0,2D.0,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20141月,國家發(fā)改委出臺指導(dǎo)意見,要求2015年底前,所有城市原則上全面實行居民階梯水價制度.小明為了解市政府調(diào)整水價方案的社會反響,隨機訪問了自己居住在小區(qū)的部分居民,就每月每戶的用水量調(diào)價對用水行為改變兩個問題進行調(diào)查,并把調(diào)查結(jié)果整理成下面的圖1,圖2

小明發(fā)現(xiàn)每月每戶的用水量在5m2-35m2之間,有8戶居民對用水價格調(diào)價漲幅抱無所謂,不用考慮用水方式的改變.根據(jù)小明繪制的圖表和發(fā)現(xiàn)的信息,完成下列問題:

1n= ,小明調(diào)查了 戶居民,并補全圖1

2)每月每戶用水量的中位數(shù)和眾數(shù)分別落在什么范圍?

3)如果小明所在的小區(qū)有1800戶居民,請你估計視調(diào)價漲幅采取相應(yīng)的用水方式改變的居民戶數(shù)有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,ADBC,BC=4AD=4B=45°.直角三角板含45°角的頂點E在邊BC上移動,一直角邊始終經(jīng)過點A,斜邊與CD交于點F.若△ABE為等腰三角形,則CF的長等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20筐白菜,以每筐25千克為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:

與標準質(zhì)量的差值(單位:千克)

0

1

2.5

筐數(shù)

1

4

2

3

2

8

120筐白菜中,最重的一筐比最輕的一筐多重多少千克?

2)與標準重量比較,20筐白菜總計超過或不足多少千克?

3)若白菜每千克售價2.8元,則出售這20筐白菜可賣多少元?(結(jié)果保留整數(shù))

查看答案和解析>>

同步練習(xí)冊答案