【題目】已知12+22+32++n2nn+1)(2n+1)(n為正整數(shù)).

22+42+62++502的值.

【答案】22100.

【解析】

先找出規(guī)律22=(2×1222×12,42=(2×2222×22,62=(2×3222×32,…,502=(2×25222×252,進(jìn)而22+42+62++50222×(12+22+32++252)即可得出結(jié)論.

解:∵22=(2×1222×12,

42=(2×2222×22

62=(2×3222×32,

…,

502=(2×25222×252,

22+42+62++50222×12+22×22+22×32++22×25222×(12+22+32++252)=4××25×26×5122100

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鞋店銷售了9雙鞋,各種尺碼的銷售量如下:

鞋的尺碼

20

21

22

23

銷售量(雙)

1

2

4

2

1)計(jì)算這9雙鞋尺碼的平均數(shù)、中位數(shù)和眾數(shù).

2)哪一個(gè)指標(biāo)是鞋廠最感興趣的指標(biāo)?哪一個(gè)指標(biāo)是鞋廠最不感興趣的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△DEF都是等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合.將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段DE與線段AB相交于點(diǎn)P,射線EF與線段AB相交于點(diǎn)G,與射線CA相交于點(diǎn)Q.

(1)求證:△BPE∽△CEQ;
(2)求證:DP平分∠BPQ;
(3)當(dāng)BP=a,CQ= a,求PQ長(zhǎng)(用含a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)的1號(hào)教學(xué)大樓共有4道門,其中兩道正門大小相同,兩道側(cè)門也大小相同,安全檢查時(shí),對(duì)4道門進(jìn)行了測(cè)試,當(dāng)同時(shí)開啟一道正門和兩道側(cè)門時(shí),2分鐘內(nèi)可以通過(guò)560名學(xué)生,當(dāng)同時(shí)開啟一道正門和一道側(cè)門時(shí),4分鐘內(nèi)可通過(guò)800名學(xué)生.

1)求平均每分鐘一道正門和一道側(cè)門各可以通過(guò)多少名學(xué)生?

2)該中學(xué)的2號(hào)教學(xué)大樓,有和1號(hào)教學(xué)大樓相同的正門和側(cè)門共5道,若這棟大樓的教室里最多有1920名學(xué)生,安全檢查規(guī)定,在緊急情況下,全大樓學(xué)生應(yīng)在4分鐘內(nèi)通過(guò)這5道門安全撤離,該棟大樓正門和側(cè)門各有幾道?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD,E是AB延長(zhǎng)線上一點(diǎn),F(xiàn)是DC延長(zhǎng)線上一點(diǎn),連接BF,EF,恰有BF=EF,將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得FG,過(guò)點(diǎn)B作EF的垂線,交EF于點(diǎn)M,交DA的延長(zhǎng)線于點(diǎn)N,連接NG.

(1)求證:BE=2CF;
(2)試猜想四邊形BFGN是什么特殊的四邊形,并對(duì)你的猜想加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=BC,BEAC于點(diǎn)E,ADBC于點(diǎn)D,BAD=45°,AD與BE交于點(diǎn)F,連接CF.

(1)求證:BF=2AE;

(2)若CD=,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一張兩邊分別平行的紙條折成如圖所示,EF為折痕,EDBF于點(diǎn)G,且∠EFB=48°,則下列結(jié)論: ①∠DEF=48°;②∠AED=84°;③∠BFC=84°;④∠DGF=96°,其中正確的個(gè)數(shù)有( )

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面推理過(guò)程

如圖,EFAD,1=2,BAC=70°.將求∠AGD的過(guò)程填寫完整.

解: 因?yàn)?/span>EFAD,

所以∠2=____ (_________________________________)

又因?yàn)椤?/span>1=2

所以∠1=3 (__________________)

所以AB_____ (___________________________________)

所以∠BAC+______=180°(___________________________)

因?yàn)椤?/span>BAC=70°

所以∠AGD=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),我國(guó)煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調(diào)查中發(fā)現(xiàn):從零時(shí)起,井內(nèi)空氣中CO的濃度達(dá)到4mg/L,此后濃度呈直線型增加,在第7小時(shí)達(dá)到最高值46mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降.如圖所示,根據(jù)題中相關(guān)信息回答下列問(wèn)題:

(1)求爆炸前后空氣中CO濃度y與時(shí)間x的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量取值范圍;
(2)當(dāng)空氣中的CO濃度達(dá)到34mg/L時(shí),井下3km的礦工接到自動(dòng)報(bào)警信號(hào),這時(shí)他們至少要以多少km/h的速度撤離才能在爆炸前逃生?
(3)礦工只有在空氣中的CO濃度降到4mg/L及以下時(shí),才能回到礦井開展生產(chǎn)自救,求礦工至少在爆炸后多少小時(shí)才能下井?

查看答案和解析>>

同步練習(xí)冊(cè)答案