【題目】如圖所示,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A-23)、B-6,0)、C-1,0),

1)請(qǐng)直接寫出點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱的點(diǎn)的坐標(biāo);

2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,求出A′點(diǎn)的坐標(biāo)。

3)請(qǐng)直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).

【答案】(1) 2-3);(2) 圖形見解析,(-3,-2);(3)點(diǎn)D的坐標(biāo)為(-7,3)或(-5-3)或(3,3).

【解析】

1)根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)與橫坐標(biāo)互為相反數(shù),縱坐標(biāo)與縱坐標(biāo)互為相反數(shù),直接寫出點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱的點(diǎn)的坐標(biāo)即可.
2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°對(duì)應(yīng)點(diǎn)A′、B′、C′的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點(diǎn)A′的坐標(biāo);
3)根據(jù)平行四邊形的對(duì)邊平行且相等,分AB、BC、AC是對(duì)角線三種情況分別寫出即可.

解:(1)點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱的點(diǎn)的坐標(biāo)為(2,-3);
2ABC旋轉(zhuǎn)后的A′B′C′如圖所示,點(diǎn)A′的坐標(biāo)為(-3,-2);

3)若AB是對(duì)角線,則點(diǎn)D-73),
BC是對(duì)角線,則點(diǎn)D-5-3),
AC是對(duì)角線,則點(diǎn)D3,3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C是以AB為直徑的圓O上一點(diǎn),直線AC與過B點(diǎn)的切線相交于D,點(diǎn)E是BD的中點(diǎn),直線CE交直線AB于點(diǎn)F.

(1)求證:CF是⊙O的切線;
(2)若ED=3,EF=5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,平分,點(diǎn)A、B、C分別是射線OM、OEON上的動(dòng)點(diǎn)(點(diǎn)A、B、C不與點(diǎn)重合),且,連接AC交射線OE于點(diǎn)D

1)求的度數(shù);

2)當(dāng)中有兩個(gè)相等的角時(shí),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,E為CD上一點(diǎn),DE:EC=2:3,連接AE,BE,BD,且AE,BD交于點(diǎn)F,則SDEF:SEBF:SABF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)對(duì)全校1200名學(xué)生進(jìn)行“校園安全知識(shí)”的教育活動(dòng),從1200名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行測(cè)試,成績(jī)?cè)u(píng)定按從高分到低分排列分為A、B、C、D四個(gè)等級(jí),繪制了圖①、圖②兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問題:

(1)求本次被抽查的學(xué)生共有多少人?
(2)將條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中“A”所在扇形圓心角的度數(shù);
(4)估計(jì)全校“D”等級(jí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形ABCD中,∠BAD=60°.

(1)如圖1,點(diǎn)E為線段AB的中點(diǎn),連接DE,CE,若AB=4,求線段EC的長(zhǎng);

(2)如圖2,M為線段AC上一點(diǎn)(M不與A,C重合),以AM為邊,構(gòu)造如圖所示等邊三角形AMN,線段MNAD交于點(diǎn)G,連接NC,DM,Q為線段NC的中點(diǎn),連接DQ,MQ,求證:DM=2DQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣為了了解2013年初中畢業(yè)生畢業(yè)后的去向,對(duì)部分初三學(xué)生進(jìn)行了抽樣調(diào)查,就初三學(xué)生的四種去向

A.讀普通高中;

B.讀職業(yè)高中

C.直接進(jìn)入社會(huì)就業(yè);

D.其它)進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(a)、(b).請(qǐng)問:

1)該縣共調(diào)查了   名初中畢業(yè)生;

2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;

3)若該縣2013年初三畢業(yè)生共有4500人,請(qǐng)估計(jì)該縣今年的初三畢業(yè)生中讀普通高中的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,有若干個(gè)點(diǎn)按如下規(guī)律排列:(11),(2,1),(22),(3,1),(3,2),(3,3),, 則第 200 個(gè)點(diǎn)的橫坐標(biāo)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是矩形紙片,AB=2.對(duì)折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點(diǎn)B折疊矩形紙片,使點(diǎn)A落在EF上的點(diǎn)N,折痕BM與EF相交于點(diǎn)Q;再次展平,連接BN,MN,延長(zhǎng)MN交BC于點(diǎn)G.有如下結(jié)論:
①∠ABN=60°;②AM=1;③QN= ;④△BMG是等邊三角形;⑤P為線段BM上一動(dòng)點(diǎn),H是BN的中點(diǎn),則PN+PH的最小值是
其中正確結(jié)論的序號(hào)是

查看答案和解析>>

同步練習(xí)冊(cè)答案