分析 先分三種情況考慮.根據(jù)兩直線平行找出相等或互補的角,再依據(jù)角的計算得出結(jié)論.
解答 解:當點P在AC的左側(cè)時,
∵AB∥EF,
∴∠A+∠APF=180°.
又∵EF∥CD,
∴∠CPF+∠C=180°.
∴∠A+∠APF+∠CPF+∠C=180°+180°=360°,
即∠A+∠C+∠APC=360°;
當點P在AC上時,∠APC=180°,
∵AB∥CD,
∴∠A+∠C=180°,
則∠A+∠C=∠APC=180°;
當點P在AC的右側(cè)時,
∵AB∥EF,
∴∠A=∠APE.
又∵EF∥CD,
∴∠CPE=∠C.
∴∠A+∠C=∠APE+∠CPE,
即∠A+∠C=∠APC.
綜上可知:當點P在AC的左側(cè)時,有∠A+∠C+∠APC=360°;當點P在AC上或AC的右側(cè)時,有∠A+∠C=∠APC.
點評 本題考查了平行線的性質(zhì),解題的關(guān)鍵是分三種情況考慮.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)平行線的性質(zhì)找出相等(或互補)的角是關(guān)鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x>5}\\{x≥1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x<5}\\{x≥-1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x>5}\\{x>-1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x<5}\\{x>-1}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com