【題目】下列命題:如圖,正方形ABCD中,E、F分別為AB、AD上的點(diǎn),AF=BE,CE、BF交于H,BF交AC于M,O為AC的中點(diǎn),OB交CE于N,連OH.下列結(jié)論中:①BF⊥CE;②OM=ON;③ ;④ .其中正確的命題有(
A.只有①②
B.只有①②④
C.只有①④
D.①②③④

【答案】B
【解析】解:∵AF=BE,AB=BC,∠ABC=∠BAD=90°, ∴△ABF≌△BEC,
∴∠BCE=∠ABF,∠BFA=∠BEC,
∴△BEH∽△ABF,
∴∠BAF=∠BHE=90°,
即BF⊥EC,①正確;
∵四邊形是正方形,
∴BO⊥AC,BO=OC,
由題意正方形中角ABO=角BCO,在上面所證∠BCE=∠ABF,
∴∠ECO=∠FBO,
∴△OBM≌△ONC,
∴ON=OM,
即②正確;
③∵△OBM≌△ONC,
∴BM=CN,
∵∠BOM=90°,
∴當(dāng)H為BM中點(diǎn)時(shí),OH= BM= CN(直角三角形斜邊中線(xiàn)等于斜邊的一半),
因此只有當(dāng)H為BM的中點(diǎn)時(shí), ,故③錯(cuò)誤;
④過(guò)O點(diǎn)作OG垂直于OH,OG交CH與G點(diǎn),
在△OGC與△OHB中,
,
故△OGC≌△OHB,
∵OH⊥OG,
∴△OHG是等腰直角三角形,
按照前述作輔助線(xiàn)之后,OHG是等腰直角三角形,OH乘以根2之后等于HG,
則在證明證明三角形OGC與三角形OHB全等之后,CG=BH,
所以④式成立.
綜上所述,①②④正確.
故選B.

【考點(diǎn)精析】掌握直角三角形斜邊上的中線(xiàn)和正方形的性質(zhì)是解答本題的根本,需要知道直角三角形斜邊上的中線(xiàn)等于斜邊的一半;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角;正方形的一條對(duì)角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線(xiàn)與邊的夾角是45o;正方形的兩條對(duì)角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把直線(xiàn)yx1向下平移后過(guò)點(diǎn)(3,-2)則平移后所得直線(xiàn)的解析式為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,∠QPN的頂點(diǎn)P在正方形ABCD兩條對(duì)角線(xiàn)的交點(diǎn)處,∠QPN=α,∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點(diǎn)E和點(diǎn)F(點(diǎn)F與點(diǎn)C、D不重合).

(1)如圖①,當(dāng)α=90°時(shí),求證:DE+DF=AD.
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當(dāng)α=60°時(shí),(1)中的結(jié)論變?yōu)? ,請(qǐng)給出證明.
(3)在(2)的條件下,將∠QPN繞點(diǎn)P旋轉(zhuǎn),若旋轉(zhuǎn)過(guò)程中∠QPN的邊PQ與邊AD的延長(zhǎng)線(xiàn)交于點(diǎn)E,其他條件不變,探究在整個(gè)運(yùn)動(dòng)變化過(guò)程中,DE,DF,AD之間滿(mǎn)足的數(shù)量關(guān)系,直接寫(xiě)出結(jié)論,不用加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B、E、C、F在一條直線(xiàn)上, AC∥DF,且AC=DF,請(qǐng)?zhí)砑右粋(gè)條件____,使△ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】﹣2的相反數(shù)是( )
A.﹣2
B.-4
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論:①∠BOE= (180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論(填編號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論:①∠BOE= (180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論(填編號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平行四邊形ABCD和矩形ABEF中,ACDF相交于點(diǎn)G.

(1) 試說(shuō)明DFCE;

(2) ACBFDF,求∠ACE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)展了“互助、平等、感恩、和諧、進(jìn)取”主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的5個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問(wèn)題:

1)這次調(diào)查的學(xué)生共有多少名?

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3計(jì)算出扇形統(tǒng)計(jì)圖中進(jìn)取所對(duì)應(yīng)的圓心角的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案