【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)AC的坐標(biāo)分別為(﹣4,5),(﹣1,3).

1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

2)寫(xiě)出點(diǎn)B的坐標(biāo);

3)將△ABC向右平移5個(gè)單位長(zhǎng)度,向下平移2個(gè)單位長(zhǎng)度,畫(huà)出平移后的圖形△ABC′;

4)計(jì)算△ABC′的面積﹒

5)在x軸上存在一點(diǎn)P,使PA+PC最小,直接寫(xiě)出點(diǎn)P的坐標(biāo).

【答案】(1)詳見(jiàn)解析;(2)B(-2,1);(3)詳見(jiàn)解析;(4)4;(5)P(,0).

【解析】

(1)直接利用已知點(diǎn)位置得出x,y軸的位置;

(2)利用平面直角坐標(biāo)系得出B點(diǎn)坐標(biāo)即可;

(3)直接利用平移的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案;

(4)利用A′B′C′所在矩形形面積減去周?chē)切蚊娣e進(jìn)而得出答案.

(5)C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)D,連接ADx軸一點(diǎn)就為所求點(diǎn).

(1)如圖所示,∵點(diǎn)A的坐標(biāo)為(﹣4,5,

∴在A點(diǎn)y軸向右平移4個(gè)單位,x軸向下平移5個(gè)單位得到即可;

(2)B(﹣2,1);

(3)如圖所示:A′B′C′即為所求;

(4)A′B′C′的面積為:3×4×3×2×1×2×2×4=4

(5)作點(diǎn)C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)D(-1,-3),連接ADx軸于一點(diǎn),該點(diǎn)為所求點(diǎn).

設(shè)直線AD:y=kx+b,A(-4,5),D(-1,-3)代入

解得:

直線AD:

y=0,x=

P點(diǎn)坐標(biāo)為(,0)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為美化校園,計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4.

1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?

2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬(wàn)元,乙隊(duì)為0.25萬(wàn)元,要使這次的綠化總費(fèi)用不超過(guò)8萬(wàn)元,至少應(yīng)安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊OAB的邊長(zhǎng)為2,點(diǎn)Bx軸上,反比例函數(shù)的圖象經(jīng)過(guò)A點(diǎn),將OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α(0°<α<360°),使點(diǎn)A落在雙曲線上,則α________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(53),B(6,5),C(46)

(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1,并寫(xiě)出點(diǎn)A1的坐標(biāo).

(2)將△A1B1C1向左平移6個(gè)單位,再向上平移5個(gè)單位,畫(huà)出平移后得到的△A2B2C2,并寫(xiě)出點(diǎn)B2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2:

(1)求反比例函數(shù)的表達(dá)式;

(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果批發(fā)商場(chǎng)銷(xiāo)售一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下.若每千克漲價(jià)1元,日銷(xiāo)售量將減少20千克.

(1)現(xiàn)該商場(chǎng)要保證每天盈利6000元,同時(shí)又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?

(2)每千克水果漲價(jià)多少元時(shí),商場(chǎng)每天獲得的利潤(rùn)最大?獲得的最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:AB⊙O的直徑,C⊙O上一點(diǎn),如圖,AB=12,BC=4.BH⊙O相切于點(diǎn)B,過(guò)點(diǎn)CBH的平行線交AB于點(diǎn)E.

(1)CE的長(zhǎng);

(2)延長(zhǎng)CEF,使EF=,連接BF并延長(zhǎng)BF⊙O于點(diǎn)G,求BG的長(zhǎng);

(3)在(2)的條件下,連接GC并延長(zhǎng)GCBH于點(diǎn)D,求證:BD=BG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①所示是邊長(zhǎng)為的大正方形中有一個(gè)邊長(zhǎng)為的小正方形.圖②是由圖①中陰影部分拼成的一個(gè)長(zhǎng)方形.

1)設(shè)圖①中陰影部分的面積為,圖②中陰影部分的面積為,請(qǐng)用含的式子表示: , ;(不必化簡(jiǎn))

2)以上結(jié)果可以驗(yàn)證的乘法公式是

3)利用(2)中得到的公式,計(jì)算:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的一元二次方程

若該方程有實(shí)數(shù)根,求的取值范圍.

若該方程一個(gè)根為,求方程的另一個(gè)根.

查看答案和解析>>

同步練習(xí)冊(cè)答案