【題目】如圖,等邊△OAB的邊長為2,點B在x軸上,反比例函數(shù)的圖象經(jīng)過A點,將△OAB繞點O順時針旋轉(zhuǎn)α(0°<α<360°),使點A落在雙曲線上,則α=________________.
【答案】30°或180°或210°
【解析】試題分析:根據(jù)等邊三角形的性質(zhì),雙曲線的軸對稱性和中心對稱性即可求解.根據(jù)反比例函數(shù)的軸對稱性,A點關(guān)于直線y=x對稱,∵△OAB是等邊三角形, ∴∠AOB=60°, ∴AO與直線y=x的夾角是15°,
∴a=2×15°=30°時點A落在雙曲線上, 根據(jù)反比例函數(shù)的中心對稱性,
∴點A旋轉(zhuǎn)到直線OA上時,點A落在雙曲線上, ∴此時a=180°,
根據(jù)反比例函數(shù)的軸對稱性,繼續(xù)旋轉(zhuǎn)30°時,點A落在雙曲線上, ∴此時a=210°;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國古代的數(shù)學(xué)專著,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負(fù)術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》中記載:“今有共買羊,人出五,不足四十五;人出七,不足三.問人數(shù)、羊價各幾何?”譯文:“假設(shè)有若干人共同出錢買羊,如果每人出5錢,那么還差45錢;如果每人出7錢那么仍舊差3錢,求買羊的人數(shù)和羊的價錢.”設(shè)共有x個人買羊,可列方程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店需要購進(jìn)甲、乙兩種商品共180件,其進(jìn)價和售價如表:(注:獲利=售價﹣進(jìn)價)
甲 | 乙 | |
進(jìn)價(元/件) | 14 | 35 |
售價(元/件) | 20 | 43 |
(1)若商店計劃銷售完這批商品后能獲利1240元,問甲、乙兩種商品應(yīng)分別購進(jìn)多少件?
(2)若商店計劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知等邊△ABC中,D是AC的中點,E是BC延長線上的一點,且CE=CD,DM⊥BC,垂足為M.
(1)求∠E的度數(shù).
(2)求證:M是BE的中點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點B在x軸的正半軸上,已知∠OBA=90°,OB=3,sin∠AOB=.反比例函數(shù)y=(x>0)的圖象經(jīng)過點A.
(1)求反比例函數(shù)的解析式;
(2)若點C(m,2)是反比例函數(shù)y=(x>0)圖象上的點,則在x軸上是否存在點P,使得PA+PC最?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育用品商店為了解5月份的銷售情況,對本月各類商品的銷售情況進(jìn)行調(diào)查,并將調(diào)查的結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖
(1)請根據(jù)圖中提供的信息,將條形圖補(bǔ)充完整;
(2)該商店準(zhǔn)備按5月份球類商品銷量的數(shù)量購進(jìn)球類商品,含籃球、足球、排球三種球,預(yù)計恰好用完進(jìn)貨款共3600元,設(shè)購進(jìn)籃球x個,足球y個,三種球的進(jìn)價和售價如表:
類別 | 籃球 | 足球 | 排球 |
進(jìn)價(單位:元/個) | 50 | 30 | 20 |
預(yù)售價(單位:元/個) | 70 | 45 | 25 |
求出y與x之間的函數(shù)關(guān)系式;
(3)在(2)中的進(jìn)價和售價的條件下,據(jù)實際情況,預(yù)計足球銷售超過60個后,這種球就會產(chǎn)生滯銷
①假設(shè)所購進(jìn)籃球、足球、排球能全部售出,求出預(yù)估利潤P(元)與x(個)的函數(shù)關(guān)系式;
②求出預(yù)估利潤的最大值,并寫出此時購進(jìn)三種球各多少個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com