【題目】如圖,在四邊形ABCD 中,∠ABC=90°,AB=6,BC=8,CD=10,AD=10 ,
(1)求四邊形ABCD的面積(2)求 BD的長(zhǎng)
【答案】(1)74;(2)2
【解析】(1)根據(jù)勾股定理的逆定理得出△ABC是直角三角形,進(jìn)而求出四邊形面積即可;
(2)過(guò)點(diǎn)D作DE⊥BC,交BC的延長(zhǎng)線(xiàn)與點(diǎn)E,利用△ABC∽△CED求出BD的長(zhǎng)即可.
(1)連接AC,
∵∠ABC=90°,
∴△ABC為直角三角形,AB=8,BC=6,∴AC=10,
又∵DA=10,CD=10,
∴102+102=(10)2
AC2+CD2=DA2
所以△ACD為直角三角形.
四邊形ABCD的面積S△ABC+S△ACD==74;
(2) 過(guò)點(diǎn)D作DE⊥BC,交BC的延長(zhǎng)線(xiàn)與點(diǎn)E
∵∠DEC=90°,∴∠DCE+∠CDE=90°,
所以∠DCE+∠ACB=90°,
∴∠CDE=∠ACB,又∵∠ABC=90°,
∴△ABC∽△CED
∴
∴CE=6,DE=8.
∴BE=BC+CE=14,
在Rt△DEB中,
DB=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點(diǎn),F(xiàn)在A(yíng)D邊上,M,N分別是CD,BC邊上的動(dòng)點(diǎn),若AB=AF=2,AD=3,則四邊形EFMN周長(zhǎng)的最小值是( )
A.2+
B.2 +2
C.5+
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)一元一次不等式與一次函數(shù)中,小明在同一個(gè)坐標(biāo)系中分別做出了一次函數(shù)l1和l2的圖像,l1與坐標(biāo)軸的交點(diǎn)分別為點(diǎn)A、點(diǎn)B,l1與l2的交點(diǎn)為點(diǎn)C,但被同桌小英不小心用墨水給部分污染了,我們一起來(lái)探討
(1)寫(xiě)出點(diǎn)A、點(diǎn)C的坐標(biāo):A(①,0);C(②,4);
(2)求△BOC的面積:S△BOC=③
(3)直接寫(xiě)出不等式2x+5<·x+·的解集并回答下面問(wèn)題
在解決問(wèn)題(3)時(shí),小明和小英各抒己見(jiàn).小明:“l(fā)2的表達(dá)式中已經(jīng)看不清楚了,并且只知道l2上一個(gè)點(diǎn)C的坐標(biāo),求不出該直線(xiàn)的表達(dá)式,所以無(wú)法求出該不等式的解集”小英說(shuō):“不用求出l2的表達(dá)式就可以得出該不等式的解集.”你同意誰(shuí)的說(shuō)法?并說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,第一角限內(nèi)的點(diǎn)A在反比例函數(shù) 的圖象上,第四象限內(nèi)的點(diǎn)B 在反比例函數(shù) 圖象上,且OA⊥OB,∠OAB=60度,則k值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的對(duì)角線(xiàn)AC和BD交于點(diǎn)O,則下列不能判斷四邊形ABCD是平行四邊形的條件是( 。
A. OA=OC,AD∥BC B. ∠ABC=∠ADC,AD∥BC
C. AB=DC,AD=BC D. ∠ABD=∠ADB,∠BAO=∠DCO
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,制作一種產(chǎn)品的同時(shí),需要將原材料加熱,設(shè)該材料溫度為y℃,從加熱開(kāi)始計(jì)算的時(shí)間為x分鐘,據(jù)了解,該材料在加熱過(guò)程中溫度y與時(shí)間x成一次函數(shù)關(guān)系,已知該材料在加熱前的溫度為15℃,加熱5分鐘使材料溫度達(dá)到60℃時(shí)停止加熱.停止加熱后,材料溫度逐漸下降,這時(shí)溫度y與時(shí)間x成反比例函數(shù)關(guān)系.
(1)分別求出該材料加熱過(guò)程中和停止加熱后y與x之間的函數(shù)表達(dá)式,并寫(xiě)出x的取值范圍;
(2)根據(jù)工藝要求,在材料溫度不低于30℃的這段時(shí)間內(nèi),需要對(duì)該材料進(jìn)行特殊處理,那么對(duì)該材料進(jìn)行特殊處理所用的時(shí)間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:如圖1,在平面內(nèi)選一定點(diǎn)O,引一條有方向的射線(xiàn)Ox,再選定一個(gè)單位長(zhǎng)度,那么平面上任一點(diǎn)M的位置可由∠MOx的度數(shù)θ與OM的長(zhǎng)度m確定,有序數(shù)對(duì)(θ,m)稱(chēng)為M點(diǎn)的“極坐標(biāo)”,這樣建立的坐標(biāo)系稱(chēng)為“極坐標(biāo)系”. 應(yīng)用:在圖2的極坐標(biāo)系下,如果正六邊形的邊長(zhǎng)為2,有一邊OA在射線(xiàn)Ox上,則正六邊形的頂點(diǎn)C的極坐標(biāo)應(yīng)記為( )
A.(60°,4)
B.(45°,4)
C.(60°,2 )
D.(50°,2 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正確的個(gè)數(shù)是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com