【題目】如圖,熱氣球在離地面800米的A處,在A處測(cè)得一大樓頂C的俯角是30°,熱氣球沿著水平方向向此大樓飛行400米后達(dá)到B處,從B處再次測(cè)得此大樓樓頂C的俯角是45°,求該大樓CD的高度.

參考數(shù)據(jù):≈1.41,≈1.73.

【答案】大樓CD的高度約為254米.

【解析】試題分析:作CE⊥AB交AB的延長(zhǎng)線于E, 設(shè)CE=x米,則BE=x,根據(jù)Rt△ACE的三角函數(shù)可得:AE= ,然后根據(jù)AB的長(zhǎng)度得出x的值,從而得出CD的長(zhǎng)度.

試題解析:作CE⊥AB交AB的延長(zhǎng)線于E, 設(shè)CE=x米, ∵∠EBC=45°, ∴BE=x米,

∵∠EAC=30°, ∴AE==x米, 由題意得,x﹣x=400,

解得x=200(+1)米, 則CD=800﹣200(+1)≈254米.

答:大樓CD的高度約為254米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作與探究.對(duì)數(shù)軸上的任意一點(diǎn)P

①作出點(diǎn)N使得NP表示的數(shù)互為相反數(shù),再把N對(duì)應(yīng)的點(diǎn)向右平移1個(gè)單位,得到點(diǎn)P的對(duì)應(yīng)點(diǎn)P.我們稱PPN變換點(diǎn);

②把P點(diǎn)向右平移1個(gè)單位,得到點(diǎn)M,作出點(diǎn)P′′使得P′′M表示的數(shù)互為相反數(shù),我們稱P′′PM變換點(diǎn).

1)如圖,若點(diǎn)P表示的數(shù)是-4,則PN變換點(diǎn)P表示的數(shù)是 ________ ;

2)若PM變換點(diǎn)P′′表示的數(shù)是2,則點(diǎn)P表示的數(shù)是 ________ ;

3)若P,P′′分別為PN變換點(diǎn)和M變換點(diǎn),且OP2OP′′,求點(diǎn)P表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線AB∥CD

1)如圖1,直接寫出∠ABE,∠CDE∠BED之間的數(shù)量關(guān)系是   

2)如圖2,BFDF分別平分∠ABE,∠CDE,那么∠BFD∠BED有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.

3)如圖3,點(diǎn)E在直線BD的右側(cè),BF,DF仍平分∠ABE,∠CDE,請(qǐng)直接寫出∠BFD∠BED的數(shù)量關(guān)系   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一個(gè)有理數(shù)轉(zhuǎn)換器(箭頭是數(shù)進(jìn)入轉(zhuǎn)換器的路徑,方框是對(duì)進(jìn)入的數(shù)進(jìn)行轉(zhuǎn)換的轉(zhuǎn)換器)

(1)當(dāng)小明輸入-3、、0.4這三個(gè)數(shù)時(shí),三次輸出的結(jié)果分別是 _______、 .

(2)你認(rèn)為當(dāng)輸入 時(shí)(寫出2個(gè)即可),其輸出結(jié)果是0?

(3)你認(rèn)為這個(gè)有理數(shù)轉(zhuǎn)換器不可能輸出 數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.

(1)求證:此方程總有兩個(gè)實(shí)數(shù)根;

(2)若此方程有一個(gè)根大于0且小于1,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園廣播主持人培訓(xùn)班開展比賽活動(dòng),分為、、四個(gè)等級(jí),對(duì)應(yīng)的成績(jī)分別是分、分、分、分,根據(jù)下圖不完整的統(tǒng)計(jì)圖解答下列問題:

(1)補(bǔ)全下面兩個(gè)統(tǒng)計(jì)圖(不寫過程);

(2)求該班學(xué)生比賽的平均成績(jī);

(3)現(xiàn)準(zhǔn)備從等級(jí)人(兩男兩女)中隨機(jī)抽取兩名主持人,請(qǐng)利用列表或畫樹狀圖的方法,求恰好抽到一男一女學(xué)生的概率?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃金分割具有嚴(yán)格的比例性、藝術(shù)性、和諧性,蘊(yùn)藏著豐富的美學(xué)價(jià)值。黃金分割是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值約為0.618。這個(gè)比值,被稱為黃金分割數(shù)。我國(guó)著名數(shù)學(xué)家華羅庚普及并做出重要貢獻(xiàn)的優(yōu)選法中有一種0.618法也應(yīng)用了黃金分割數(shù)。

定義:點(diǎn)C在線段AB上,若滿足AC2=BCAB,則稱點(diǎn)C為線段AB的黃金分割點(diǎn)(如圖1).

如圖2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABCAC于點(diǎn)D

(1)求證:點(diǎn)D是線段AC的黃金分割點(diǎn);

2)求出線段AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形ABCDE中,∠BCD、∠EDC的外角分別是∠FCD、∠GDC,CPDP分別平分∠FCD和∠GDC且相交于點(diǎn)P,若∠A=140°,∠B=120°,∠E=90°,則∠P=______°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們學(xué)習(xí)過反比例函數(shù),例如,當(dāng)矩形面積一定時(shí),長(zhǎng)a是寬b的反比例函數(shù),其函數(shù)關(guān)系式可以寫為s為常數(shù),s≠0).

請(qǐng)你仿照上例另舉一個(gè)在日常生活、生產(chǎn)或?qū)W習(xí)中具有反比例函數(shù)關(guān)系的量的實(shí)例,并寫出它的函數(shù)關(guān)系式.

實(shí)例:三角形的面積S一定時(shí),三角形底邊長(zhǎng)y是高x的反比例函數(shù);

函數(shù)關(guān)系式:   (s為常數(shù),s≠0).

查看答案和解析>>

同步練習(xí)冊(cè)答案