【題目】如圖,在扇形OMN中,∠MON=90°,OM=6,△ABC是扇形的內接三角形,其中A、C、B分別在半徑OM、ON和弧MN上,∠ACB=90°,BC:AC=3:8,則線段BC的最小值為_____.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是⊙的直徑,,點、在⊙上,、的延長線交于點,且,,有以下結論:①;②劣弧的長為;③點為的中點;④平分,以上結論一定正確的是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)與反比例函數(shù)的圖象相交于兩點,過點作軸于點,,,點的坐標為.
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)求的面積;
(3)是軸上一點,且是等腰三角形,請直接寫出所有符合條件的點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,和均為等腰三角形,且,連接,,兩條線段所在的直線交于點.
(1)線段與有何數(shù)量關系和位置關系,請說明理由.
(2)若已知,,繞點順時針旋轉,
①如圖2,當點恰好落在的延長線上時,求的長;
②在旋轉一周的過程中,設的面積為,求的最值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,4)和點B(m,﹣2).
(1)求△AOB的面積;
(2)結合圖象直接寫出y1<y2時x的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,以AC為直徑的⊙O交AB于點D,點E為弧AD的中點,連接CE交AB于點F,且BF=BC.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為2,=,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,E、F分別在BC、AD上,若想要使四邊形AFCE為平行四邊形,需添加一個條件,這個條件不可以是( )
A. AF=CE B. AE=CF C. ∠BAE=∠FCD D. ∠BEA=∠FCE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c的頂點(0,5),且過點(﹣3,),先求拋物線的解析式,再解決下列問題:
(應用)問題1,如圖2,線段AB=d(定值),將其彎折成互相垂直的兩段AC、CB后,設A、B兩點的距離為x,由A、B、C三點組成圖形面積為S,且S與x的函數(shù)關系如圖所示(拋物線y=ax2+bx+c上MN之間的部分,M在x軸上):
(1)填空:線段AB的長度d= ;彎折后A、B兩點的距離x的取值范圍是 ;若S=3,則是否存在點C,將AB分成兩段(填“能”或“不能”) ;若面積S=1.5時,點C將線段AB分成兩段的長分別是 ;
(2)填空:在如圖1中,以原點O為圓心,A、B兩點的距離x為半徑的⊙O;畫出點C分AB所得兩段AC與CB的函數(shù)圖象(線段);設圓心O到該函數(shù)圖象的距離為h,則h= ,該函數(shù)圖象與⊙O的位置關系是 .
(提升)問題2,一個直角三角形斜邊長為c(定值),設其面積為S,周長為x,證明S是x的二次函數(shù),求該函數(shù)關系式,并求x的取值范圍和相應S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).
(1)作出△ABC關于y軸對稱的,并寫出的坐標;
(2)作出△ABC繞點O逆時針旋轉90°后得到的,并求出所經(jīng)過的路徑長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com