精英家教網 > 初中數學 > 題目詳情

【題目】如圖是二次函數y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣3,0),下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),( ,y2)是拋物線上兩點,則y1<y2 , 其中說法正確的是(

A.①②
B.②③
C.①②④
D.②③④

【答案】A
【解析】解:∵拋物線開口向上,
∴a>0,
∵拋物線對稱軸為直線x=﹣ =﹣1,
∴b=2a>0,則2a﹣b=0,所以②正確;
∵拋物線與y軸的交點在x軸下方,
∴c<0,
∴abc<0,所以①正確;
∵x=2時,y>0,
∴4a+2b+c>0,所以③錯誤;
∵點(﹣5,y1)離對稱軸要比點( ,y2)離對稱軸要遠,
∴y1>y2 , 所以④錯誤.
故選A.
【考點精析】利用二次函數圖象以及系數a、b、c的關系對題目進行判斷即可得到答案,需要熟知二次函數y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC繞點C順時針旋轉得到,其中點A′與點A是對應點,點B′與點B是對應點,連接AB′,且A、B′、A′在同一條直線上,則AA′的長為(

A.4
B.6
C.3
D.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,直線a經過正方形ABCD的頂點A,分別過正方形的頂點B、DBFa于點F,DEa于點E,若DE=8,BF=5,則EF的長為__

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下表是隨機抽取的某公司部分員工的月收入資料.

月收入/元

45000

18000

10000

5500

5000

3400

3000

2000

人數

1

1

1

3

6

1

11

2

(1)請計算以上樣本的平均數和中位數;

(2)甲乙兩人分別用樣本平均數和中位數來估計推斷公司全體員工月收入水平,請你寫出甲乙兩人的推斷結論;

(3)指出誰的推斷比較科學合理,能真實地反映公司全體員工月收入水平,并說出另一個人的推斷依據不能真實反映公司全體員工月收入水平的原因.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC,BD交于點E,DFACF點,若∠ADF=3FDC,則∠DEC的度數是( 。

A. 30° B. 45° C. 50° D. 55°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知在菱形ABCD中,∠ABC=60°,M、N分別是邊BC,CD上的兩個動點,∠MAN=60°,AM、AN分別交BDE、F兩點.

(1)如圖1,求證:CM+CN=BC;

(2)如圖2,過點EEGANDC延長線于點G,求證:EG=EA;

(3)如圖3,若AB=1,AED=45°,直接寫出EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解答題
(1)【問題提出】
如圖①,已知△ABC是等腰三角形,點E在線段AB上,點D在直線BC上,且ED=EC,將△BCE繞點C順時針旋轉60°至△ACF連接EF
試證明:AB=DB+AF

(2)【類比探究】
如圖②,如果點E在線段AB的延長線上,其他條件不變,線段AB,DB,AF之間又有怎樣的數量關系?請說明理由

(3)如果點E在線段BA的延長線上,其他條件不變,請在圖③的基礎上將圖形補充完整,并寫出AB,DB,AF之間的數量關系,不必說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知x1、x2是一元二次方程2x2﹣2x+1﹣3m=0的兩個實數根,且x1、x2滿足不等式x1x2+2(x1+x2)>0,求實數m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線 與x軸相交于點A、B,與y軸相交于點C,拋物線對稱軸與x軸相交于點M,

(1)求△ABC的面積;
(2)若p是x軸上方的拋物線上的一個動點,求點P到直線BC的距離的最大值;
(3)若點P在拋物線上運動(點P異于點A),當∠PCB=∠BCA時,求直線PC的解析式.

查看答案和解析>>

同步練習冊答案