分析 (1)先作AC的垂直平分線得到AC的中點(diǎn)O,再延長(zhǎng)BO到點(diǎn)D,使OD=OB,則四邊形ABCD為平行四邊形;
(2)作AH⊥BC于H,如圖,利用勾股定理得到AH2=32-BH2,AH2=62-(5+BH)2,則可求出BH和AH,然后根據(jù)平行四邊形的面積公式求解.
解答 解:(1)如圖,平行四邊形ABCD為所作;
(2)作AH⊥BC于H,如圖,
在Rt△ABH中,AH2=AB2-BH2=32-BH2,
在Rt△ACH中,AH2=AC2-CH2=62-(5+BH)2,
則32-BH2=62-(5+BH)2,解得BH=$\frac{1}{5}$,
所以AH=$\sqrt{{3}^{2}-(\frac{1}{5})^{2}}$=$\frac{4\sqrt{14}}{5}$,
所以?ABCD的面積=$\frac{4\sqrt{14}}{5}$×5=4$\sqrt{14}$.
點(diǎn)評(píng) 本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了平行四邊形的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{{x}^{2}}$ | C. | $\sqrt{0.7}$ | D. | $\sqrt{\frac{1}{3}}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | i |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{12}$ | B. | $\sqrt{\frac{a}}$ | C. | $\sqrt{{a}^{2}+1}$ | D. | $\sqrt{4a+4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com