【題目】如圖1,在中,弦與半徑交于點(diǎn),連接、,

1)求證:;

2)如圖2,過點(diǎn)于點(diǎn),垂足為,連接,求證:;

3)如圖3,在(2)的條件下,連接并延長于點(diǎn),連接、,過點(diǎn)于點(diǎn),交于點(diǎn),連接,若,時,求線段的長度.

【答案】1)證明見解析;(2)證明見解析;(3

【解析】

1)延長,連接,根據(jù)等腰三角形的底角相等,三角形的外角的性質(zhì),結(jié)合,得,再結(jié)合圓周角定理,得,即可得到結(jié)論;

2)作,,根據(jù)等腰三角形三線合一,得,結(jié)合條件得,易證,結(jié)合垂徑定理,即可得到結(jié)論;

3)延長,連接,,先證,再證,,得四邊形是平行四邊形,根據(jù)直角三角形和等腰三角形的性質(zhì)得,結(jié)合平行線截得的線段成比例與勾股定理,即可求解.

1)如圖1中,延長,連接

,

,

,

,

,

,

;

2)如圖2中,作,

,,

,

,

,

CDAB,

,,

,

,,

,

,

,

,

;

3)在圖3中,延長,連接,

,

,

,

,

,,

,

,

,

,

,

,

,

,

,,

,

四邊形是平行四邊形,

,

,

,

,

,,

,

,CTDB

,,

,

,

,

,

,

,

,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過,兩點(diǎn),頂點(diǎn)為D

ab的值;

將拋物線沿y軸方向上下平移,使頂點(diǎn)D落在x軸上.

求平移后所得圖象的函數(shù)解析式;

若將平移后的拋物線,再沿x軸方向左右平移得到新拋物線,若時,新拋物線對應(yīng)的函數(shù)有最小值2,求平移的方向和單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)甲、乙兩人用如圖所示的、兩個轉(zhuǎn)盤(分別三等分和四等分)做游戲,規(guī)則是:轉(zhuǎn)動兩個轉(zhuǎn)盤各1次,若兩個轉(zhuǎn)盤停止轉(zhuǎn)動后,指針?biāo)趨^(qū)域的兩個數(shù)字之積為奇數(shù),則甲獲勝,否則乙獲勝.求甲獲勝的概率.

2)在一個不透明的袋中放入除顏色外都相同的1個紅球和n個白球,攪勻后從中任意摸出2個球,若兩個球中出現(xiàn)紅球的概率與(1)中甲獲勝的概率相同,則n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,拋物線的頂點(diǎn)為,經(jīng)過拋物線上的兩點(diǎn)的直線交拋物線的對稱軸于點(diǎn)

1)求拋物線的解析式和直線的解析式.

2)在拋物線上兩點(diǎn)之間的部分(不包含兩點(diǎn)),是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

3)若點(diǎn)在拋物線上,點(diǎn)軸上,當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,直接寫出滿足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校初三學(xué)生上周末使用手機(jī)的情況(選項:A.聊天;B.學(xué)習(xí);C.購物;D.游戲;E.其他),隨機(jī)抽查了該校初三若干名學(xué)生,對其上周末使用手機(jī)的情況進(jìn)行統(tǒng)計(每個學(xué)生只選一個選項),繪制了統(tǒng)計表和條形統(tǒng)計圖.

選項

人數(shù)

頻率

A

15

0.3

B

10

m

C

5

0.1

D

n

E

5

0.1

根據(jù)以上信息回答下列問題:

(1)這次調(diào)查的樣本容量是

(2)統(tǒng)計表中m ,n ,補(bǔ)全條形統(tǒng)計圖;

(3)若該校初三有540名學(xué)生,請估計該校初三學(xué)生上周末利用手機(jī)學(xué)習(xí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把兩邊之比為整數(shù)的三角形稱為倍比三角形.其中,這個整數(shù)比稱為倍比,第三條邊叫做該三角形的底.

1)如圖1,ABC是以AC為底的倍比三角形,倍比為3,若∠C=90°,AC=2,求BC的長;

2)如圖2,ABC中,DBC邊上一點(diǎn),BD=3,CD=1,連結(jié)AD.若AC=2,求證:ABD是倍比三角形,并求出倍比;

3)如圖3,菱形ABCD中,∠BAD為鈍角,P為對角線BD上一動點(diǎn),過PPHCDH、當(dāng)CP+PH的值最小時,APCD恰好是以PD為底的倍比三角形,記倍比為x,=y,求y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我縣實(shí)施新課程改革后,學(xué)習(xí)的自主字習(xí)、合作交流能力有很大提高,張老師為了了解所教班級學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對本班部分學(xué)生進(jìn)行了為期半個月的跟蹤調(diào)査,并將調(diào)査結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)査結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖下列問題:

1)本次調(diào)查中,張老師一共調(diào)査了  名同學(xué),其中C類女生有  名,D類男生有  名;

2)將上面的條形統(tǒng)計圖補(bǔ)充完整;

3)為了共同進(jìn)步,張老師想從被調(diào)査的A類和D類學(xué)生中分別選取一位同學(xué)迸行一幫一互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角標(biāo)系中,拋物線Cyx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)Dy軸正半軸上一點(diǎn).且滿足ODOC,連接BD,

1)如圖1,點(diǎn)P為拋物線上位于x軸下方一點(diǎn),連接PB,PD,當(dāng)SPBD最大時,連接AP,以PB為邊向上作正BPQ,連接AQ,點(diǎn)M與點(diǎn)N為直線AQ上的兩點(diǎn),MN2且點(diǎn)N位于M點(diǎn)下方,連接DN,求DN+MN+AM的最小值

2)如圖2,在第(1)問的條件下,點(diǎn)C關(guān)于x軸的對稱點(diǎn)為E,將BOE繞著點(diǎn)A逆時針旋轉(zhuǎn)60°得到B′O′E′,將拋物線y沿著射線PA方向平移,使得平移后的拋物線C′經(jīng)過點(diǎn)E,此時拋物線C′x軸的右交點(diǎn)記為點(diǎn)F,連接E′F,B′F,R為線段E’F上的一點(diǎn),連接B′R,將B′E′R沿著B′R翻折后與B′E′F重合部分記為B′RT,在平面內(nèi)找一個點(diǎn)S,使得以B′、RT、S為頂點(diǎn)的四邊形為矩形,求點(diǎn)S的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖像與軸交于兩點(diǎn)(點(diǎn)點(diǎn)的右側(cè)),與軸交于點(diǎn),點(diǎn)為拋物線的頂點(diǎn),且

1)點(diǎn)為直線上方拋物線上一點(diǎn),求四邊形的面積的最大值;點(diǎn)分別為射線、上的動點(diǎn),當(dāng)四邊形面積取得最大值時,求當(dāng)線段的值為最小值時點(diǎn)的坐標(biāo).

2)把繞點(diǎn)旋轉(zhuǎn)一定角度后得到,且點(diǎn)恰好在線段上,拋物線上的點(diǎn)與點(diǎn)關(guān)于拋物線對稱軸對稱,作,把沿直線平移后得到,在變換過程中是否存在為等腰三角形,若存在,直接寫出此時的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案