【題目】如圖,為測量江兩岸碼頭B、D之間的距離,從山坡上高度為50米的A處測得碼頭B的EAB為15°,碼頭D的EAD為45°,點C在線段BD的延長線上,ACBC,垂足為C,求碼頭B、D的距離(結(jié)果保留整數(shù)).

【答案】135米

【解析】解:AEBC,∴∠ADC=EAD=45°。

ACCD,CD=AC=50。

AEBC∴∠ABC=EAB=15°

, 。

BD185.2﹣50≈135(米)。

答:碼頭B、D的距離約為135米

EAB=15°,根據(jù)平行的性質(zhì),可得ABC=EAB=15°。從而解直角三角形ABC可求得BC的長。由ADC=EAD=45°可得CD=AC=50。從而由BD=BC-CD可求得B、D的距離。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC 中,ABAC,∠BAC120°,AC 的垂直平分線交 BC F,交 AC E,交 BA 的延長線于 G,若 EG3,則 BF 的長是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+b的圖象分別與x、y軸交于點B、A,與反比例函數(shù)的圖象分別交于點C、D,CEx軸于點E,tanABO=,OB=4,OE=2.

(1)求該反比例函數(shù)的解析式;

(2)求線段CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】黃巖某校搬遷后,需要增加教師和學生的寢室數(shù)量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在2030之間(包括2030),且四人間的數(shù)量是雙人間的5倍.

(1)2018年學校寢室數(shù)為64個,以后逐年增加,預計2020年寢室數(shù)達到121個,求20182020年寢室數(shù)量的年平均增長率;

(2)若三類不同的寢室的總數(shù)為121個,則最多可供多少師生住宿?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將含有30°角的直角三角板ABC放入平面直角坐標系,頂點A,B分別落在x、y軸的正半軸上,∠OAB60°,A的坐標為(1,0),將三角板ABC沿x軸向右作無滑動的滾動(先繞點A按順時針方向旋轉(zhuǎn)60°,再繞點C按順時針方向旋轉(zhuǎn)90°,)當點B第一次落在x軸上時,則點B運動的路徑與坐標軸圍成的圖形面積是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蘭州中山橋位于蘭州濱河路中段白塔山下、金城關前,是黃河上第一座真正意義上的橋梁,有天下黃河第一橋之美譽.它像一部史詩,記載著蘭州古往今來歷史的變遷.橋上飛架了5座等高的弧形鋼架拱橋. 小蕓和小剛分別在橋面上的A,B兩處,準備測量其中一座弧形鋼架拱梁頂部C處到橋面的距離AB=20m,小蕓在A處測得∠CAB=36°,小剛在B處測得∠CBA=43°,求弧形鋼架拱梁頂部C處到橋面的距離.(結(jié)果精確到0.1m)(參考數(shù)據(jù)sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】七(一)班同學為了解某小區(qū)家庭月均用水情況,隨機調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)整理如下表(部分):

月均用水量x/m3

0<x≤5

5<x≤10

10<x≤15

15<x≤20

x>20

頻數(shù)/

12

20

3

頻率

0.12

0.07

若該小區(qū)有800戶家庭,據(jù)此估計該小區(qū)月均用水量不超過10m3的家庭約有________戶.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,長方形紙片ABCD的長AD9cm,寬AB3cm,將其折疊,使點D與點B重合.

求:(1)折疊后DE的長;(2)以折痕EF為邊的正方形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機摸出一張,記下字母后放回,充分洗勻后,再從中摸出一張,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個游戲?qū)﹄p方公平嗎?請說明現(xiàn)由.

查看答案和解析>>

同步練習冊答案