【題目】如圖,在△ABC,AB=AC=10,D是邊BC上一動點(不與B,C重合),∠ADE=B=α,DEAC于點E,cosα= .下列結(jié)論:

①△ADE∽△ACD; ②當BD=6時,△ABD與△DCE全等;

③△DCE為直角三角形時,BD為8; ④0<CE≤6.4.

其中正確的結(jié)論是____________.(把你認為正確結(jié)論的序號都填上)

【答案】①②④

【解析】試題解析:作AHBCH,如圖,


AB=AC,
∴∠B=∠C=α,BH=CH,
而∠ADE=∠B=α
∴∠ADE=∠C,
而∠DAE=∠CAD,
∴△ADE∽△ACD,所以①正確;
在Rt△ABH中,cosB=
BH=10× =8,
BC=2BH=16,
BD=6,則CD=10,
∵∠ADC=∠B+∠BAD,
而∠ADE=∠B=α,
∴∠EDC=∠BAD
在△ABD與△DCE
,
∴△ABD△DCE,所以②正確;
∵∠B=∠C,∠BAD=∠CDE,
∴△ABD∽△DCE,
DCE為直角三角形,當∠DEC=90°,則∠ADB=90°,BD為8;

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,直線與x 軸交于點A,與y軸交于點C.拋物線y=ax2+bx+c的對稱軸是且經(jīng)過A、C兩點,與x軸的另一交點為點B.

(1)①直接寫出點B的坐標;②求拋物線解析式.

(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標.

(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點P是以C為圓心,1為半徑的⊙C上的一個動點,已知A(﹣1,0),B1,0),連接PA,PB,則PA2+PB2的最大值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】社會主義核心價值觀是社會主義核心價值體系最核心的體現(xiàn),踐行社會主義和興價值觀也是每一名中學生的責任.某校開展了社會主義核心價值觀演講比賽,學習在演講比賽活動中,對全校學生用AB、CD四個等級進行評分,現(xiàn)從中隨機抽取若干名學生進行調(diào)查,繪制出了如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中的信息回答下列問題:

1)共抽取了多少名學生進行調(diào)查?

2)將圖甲中的條形統(tǒng)計圖補充完整;

3)求出圖乙中B等級所占圓心角的度數(shù);

4)某班有男、女各2名學生報名參加演講比賽,若該班班主任從中選2名學生最終參加校級比賽,試用列表或畫樹狀圖的方法,求恰好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綠色出行是對環(huán)境影響最小的出行方式,“共享單車”已成為長春市的一道亮麗的風景線.某社會實踐活動小組為了了解“共享單車”的使用情況,對本校師生在76日至710日使用單車的情況進行了問卷調(diào)查. 以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖的一部分:

請根據(jù)以上信息解答下列問題:

177日使用“共享單車”的師生有_________人.

2)不同品牌的“共享單車”各具特色,社會實踐活動小組針對有過使用“共享單車”經(jīng)歷的師生做了進一步調(diào)查,每個人都按要求選擇了一種自己喜歡的“共享單車”,統(tǒng)計結(jié)果如圖,其中喜歡mobike的師生有36人.求喜歡ofo的師生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,弦CD⊥AB,垂足為點ECF⊥AF,且CF=CE

1)求證:CF⊙O的切線;

2)若sin∠BAC=,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市用1200元購進一批甲玩具,用800元購進一批乙玩具,所購甲玩具件數(shù)是乙玩具件數(shù)的,已知甲玩具的進貨單價比乙玩具的進貨單價多1元.

1)求:甲、乙玩具的進貨單價各是多少元?

2)玩具售完后,超市決定再次購進甲、乙玩具(甲、乙玩具的進貨單價不變),購進乙玩具的件數(shù)比甲玩具件數(shù)的2倍多60件,求:該超市用不超過2100元最多可以采購甲玩具多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知實數(shù)a,c滿足2a+cac+20,二次函數(shù)y=ax2+bx+9a經(jīng)過點B(4,n)、A(2n),且當1x2時,y=ax2+bx+9a的最大值與最小值之差是9,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】電動自行車已成為市民日常出行的首選工具。據(jù)某市品牌電動自行車經(jīng)銷商1至3月份統(tǒng)計,該品牌電動自行車1月份銷售150輛,3月銷售216輛.

(1)求該品牌電動車銷售量的月平均增長率;

(2)若該品牌電動自行車的進價為2300元,售價2800元,則該經(jīng)銷商1月至3月共盈利多少元?

查看答案和解析>>

同步練習冊答案