【題目】如圖,正方形ABCD中,P在對角線BD上,E在CB的延長線上,且PE=PC,過點P作PF⊥AE于F,直線PF分別交AB、CD于G、H,
(1)求證:DH=AG+BE;
(2)若BE=1,AB=3,求PE的長.
【答案】(1)證明見解析;(2) .
【解析】
試題
(1)如圖,在DC上截取DM=BE,連接AM,則由已知可證△ABE≌ADM,再證四邊形AGHM是平行四邊形就可得MH=AG,再由DH=MH+DM=AG+BE即可得到結(jié)論;
(2)如圖,連接AP,由已知可證:△ABP≌△CBP,得到PA=PC,∠3=∠4,結(jié)合PC=PE可證得PA=PE,∠3=∠5;再由∠5+∠BNE=∠3+∠ANP=90°,可證∠APE=90°,由此可得△APE是等腰直角三角形;在△ABE中由勾股定理求得AE的長就可解得PE的長.
試題解析:
(1)在DC上截取DM=BE,連接AM,
∵四邊形ABCD是正方形,
∴∠ABE=∠ADM=90°,AB=AD,
∵在△ABE和△ADM中: ,
∴△ABE≌ADM,
∴∠1=∠2,
∴∠1+∠BAM=∠2+∠BAM=90°,
∴AM⊥AE.
又∵PF⊥AE于F,
∴AM∥FH,
又∵AB∥CD,
∴四邊形AGHM是平行四邊形,
∴ AG=MH,
∵ DH=DM+MH,
∴ DH=AG+BE.
(2)連接AP.
∵四邊形ABCD是正方形,
∴AB=BC,∠ABP=∠CBP=45°,
∵在△ABP和△CBP中: ,
∴△ABP≌△CBP,
∴PA=PC,∠3=∠4,
∵PE=PC,
∴PA=PE,∠4=∠5,
∴∠3=∠5,
又∵∠ANP=∠ENB,
∴∠3+∠ANP=∠5+∠ENB=90°,
∴AP⊥PE,即△APE是等腰直角三角形,
∵BE=1,AB=3,
∴ AE=,
∴ PE=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB上一點,以CD為直徑的⊙O交BC于點E,連接AE交CD于點P,交⊙O于點F,連接DF,∠CAE=∠ADF.
(1)判斷AB與⊙O的位置關(guān)系,并說明理由;
(2)若PF:PC=1:2,AF=5,求CP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
材料1.若一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,則x1+x2=-,x1x2=.
材料2.已知實數(shù)m,n滿足m2-m-1=0,n2-n-1=0,且m≠n,求的值.
解:由題知m,n是方程x2-x-1=0的兩個不相等的實數(shù)根,
根據(jù)材料1得m+n=1,mn=-1,
∴.
解決問題:
(1)一元二次方程x2-4x-3=0的兩根為x1,x2,則x1+x2= ,x1x2= .
(2)已知實數(shù)m,n滿足2m2-2m-1=0,2n2-2n-1=0,且m≠n,求m2n+mn2的值.
(3)已知實數(shù)p,q滿足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…則正方形A2015B2015C2015D2015的邊長是( )
A.()2014 B.()2015 C.()2015 D.()2014
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D是邊BC的中點,DE⊥AC、DF⊥AB,垂足分別是E、F,且BF=CE.
(1)求證:DE=DF;
(2)當(dāng)∠A=90°時,試判斷四邊形AFDE是怎樣的四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,⊙O過點B,C,且與BA,CA的延長線分別交于點D,E,弦DF∥AC,EF的延長線交BC的延長線于點G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)“概率”時,做投擲骰子(質(zhì)地均勻的正方體)實驗,他們共做了60次實驗,實驗的結(jié)果如下:
(1)計算“3點朝上”的頻率和“5點朝上”的頻率.
(2)小穎說:“根據(jù)實驗,一次實驗中出現(xiàn)5點朝上的概率最大”;小紅說:“如果投擲600次,那么出現(xiàn)6點朝上的次數(shù)正好是100次.”小穎和小紅的說法正確嗎?為什么?
(3)小穎和小紅各投擲一枚骰子,用列表或畫樹狀圖的方法求出兩枚骰子朝上的點數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚泰山文化,某校舉辦了“泰山詩文大賽”活動,從中隨機抽取部分學(xué)生的比賽成績,根據(jù)成績(成績都高于50分),繪制了如下的統(tǒng)計圖表(不完整):
組別 | 分?jǐn)?shù) | 人數(shù) |
第1組 | 90<x≤100 | 8 |
第2組 | 80<x≤90 | a |
第3組 | 70<x≤80 | 10 |
第4組 | 60<x≤70 | b |
第5組 | 50<x≤60 | 3 |
請根據(jù)以上信息,解答下列問題:
(1)求出a,b的值;
(2)計算扇形統(tǒng)計圖中“第5組”所在扇形圓心角的度數(shù);
(3)若該校共有1800名學(xué)生,那么成績高于80分的共有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com