【題目】如圖,△ABC是等邊三角形,⊙O過點(diǎn)B,C,且與BA,CA的延長線分別交于點(diǎn)D,E,弦DF∥AC,EF的延長線交BC的延長線于點(diǎn)G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長.
【答案】(1)證明見解析;(2)BF=2.
【解析】
試題分析:(1)根據(jù)三角形ABC是等邊三角形,得到∠BCA=∠BAC=60°,再根據(jù)圓周角定理的推論得到∠BFE=∠BCA=60°.根據(jù)兩條平行弦所夾的弧相等證明弧DE=弧CF,從而得到∠EBD=∠CBF,∠EBF=∠ABC=60°,從而證明結(jié)論;
(2)結(jié)合等邊三角形的邊相等,盡量能夠把已知的線段和未知的線段放到兩個(gè)相似三角形中,進(jìn)行求解.
(1)證明:∵△ABC是等邊三角形,
∴∠BCA=∠BAC=60°,
∵DF∥AC,
∴∠D=∠BAC=60°,∠BEF=∠D=60°,
又∵∠BFE=∠BCA=60°,
∴△BEF是等邊三角形.
(2)解:∵∠ABC=∠EBF=60°,
∴∠FBG=∠ABE,
又∠BFG=∠BAE=120°,
∴△BFG∽△BAE,
∴ ,
又BG=BC+CG=AB+CG=6,BE=BF,
∴BF2=ABBG=24,
可得BF=2(舍去負(fù)值).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正五邊形,將它繞旋轉(zhuǎn)中心旋轉(zhuǎn)一定角度后能與自身重合,則至少應(yīng)將它旋轉(zhuǎn)的度數(shù)是( )
A. 60°B. 72°C. 90°D. 108°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段OA⊥OB,C為OB的中點(diǎn),D為AO上一點(diǎn),連接AC,BD交于點(diǎn)P.
(1)如圖①,當(dāng)OA=OB,且D為AO的中點(diǎn)時(shí),求的值;
(2)如圖②,當(dāng)OA=OB,=時(shí),求tan ∠BPC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蘋果的進(jìn)價(jià)為每千克3.8元,銷售中估計(jì)有5%的蘋果正常損耗,為避免虧本,商家把售價(jià)應(yīng)該至少定為每千克元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周長相等的正三角形、正四邊形、正六邊形的面積S3、S4、S6間的大小關(guān)系是( )
A.S3>S4>S6 B.S6>S4>S3 C.S6>S3>S4 D.S4>S6>S3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b是方程x2+x﹣2012=0的兩個(gè)根,則a2+2a+b的值為( )
A.2009
B.2010
C.2011
D.2012
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點(diǎn),且OC∥BD,AD分別與BC,OC相交于點(diǎn)E,F(xiàn),則下列結(jié)論:
①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )
A. ②④⑤⑥ B. ①③⑤⑥ C. ②③④⑥ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某住宅小區(qū)有一正南朝向的居民樓,如下圖,該居民樓的一樓是高6m的小區(qū)超市,超市以上是居民住房.在該樓前方15m處準(zhǔn)備蓋一幢高20m的新樓.已知當(dāng)?shù)囟菊绲年柟馀c水平線夾角為32°.
(1)超市以上居民住房采光是否受到影響?為什么?
(2)若要使居民住房采光不受影響,兩樓至少應(yīng)相距多少米?
(結(jié)果保留整數(shù),參考數(shù)據(jù):sin32o≈,cos32o≈,tan32o≈)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com