【題目】(1)拋物線經(jīng)過點(diǎn)A (4,0),點(diǎn)B (1,-3) ,求該拋物線的解析式;

(2)如圖,要修建一個(gè)圓形噴水池,在池中心豎直安裝一根水管,在水管的頂端安一個(gè)噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達(dá)到最高,高度為3m,水柱落地處離池中心3m,水管應(yīng)多長?

(3)如圖,點(diǎn)P>0),在軸正半軸上,過點(diǎn)P作平行于軸的直線,分別交拋物線于點(diǎn)A,B,交拋物線于點(diǎn)C,D,求的值.

【答案】(1);(2) 米;(3)

【解析】試題分析:1A、B的坐標(biāo)代入拋物線解析式,解方程組,即可求拋物線的解析式;

2以池中心為坐標(biāo)原點(diǎn),水管為軸建立直角坐標(biāo)系設(shè)拋物線解析式為 ,把點(diǎn)3,0)代入,即可求的拋物線的解析式,當(dāng)x=0時(shí),對(duì)應(yīng)的y的值就是水管的長;

3)由題意,可得AB、C、D的坐標(biāo),然后求出AB,CD的長,即可得到答案

試題解析:解:(1)代入點(diǎn)A、B的坐標(biāo)得 ,解得: ,拋物線解析式為

2以池中心為坐標(biāo)原點(diǎn),水管為軸建立直角坐標(biāo)系拋物線的頂點(diǎn)坐標(biāo)為1,3),

設(shè)拋物線解析式為,點(diǎn)3,0在拋物線上,,解得: ,拋物線為當(dāng)x=0時(shí)y=,故水管應(yīng)長;

3)由題意,可得, , ,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在DB、DC、BC的延長線上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D是BA延長線上一點(diǎn),E是AC的中點(diǎn).

(1)利用尺規(guī)作出∠DAC的平分線AM,連接BE并延長交AM于點(diǎn)F,(要求在圖中標(biāo)明相應(yīng)字母,保留作圖痕跡,不寫作法);

(2)試判斷AF與BC有怎樣的位置關(guān)系與數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,ADBC邊上的中線.

(1)畫出與△ACD關(guān)于點(diǎn)D成中心對(duì)稱的三角形;

(2)找出與AC相等的線段;

(3)探究:△ABCABAC的和與中線AD之間有何大小關(guān)系?并說明理由;

(4)AB=5,AC=3,求線段AD的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,邊長為2的正五邊形ABCDE內(nèi)接于⊙O,ABDC的延長線交于點(diǎn)F,過點(diǎn)EEGCBBA的延長線于點(diǎn)G


1)求證:
2)證明:EG與⊙O相切,并求AGBF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,六邊形ABCDEF,AFCDABDE,∠A=140°,∠B=100°,∠E=90°,:∠C、∠D、∠F的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,ACB=90CDABD

(1)寫出圖中相似的三角形;

(2)求證: = AD·BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C的坐標(biāo)為(m0)(m>0),點(diǎn)D(m,1)BC,將長方形OABC沿AD折疊壓平使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.

1當(dāng)m=3時(shí),點(diǎn)B的坐標(biāo)為_________點(diǎn)E的坐標(biāo)為_________;

2隨著m的變化,試探索:點(diǎn)E能否恰好落在x軸上?若能請(qǐng)求出m的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l外有不重合的兩點(diǎn)AB.在直線l上求一點(diǎn)C,使得的長度最短,作法為:①作點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)B'.②連接AB'交直線l于點(diǎn)C,則點(diǎn)C即為所求.在解決這個(gè)問題時(shí),沒有用到的知識(shí)點(diǎn)是( )

A. 線段的垂直平分線性質(zhì) B. 兩點(diǎn)之間線段最短

C. 三角形兩邊之和大于第三邊 D. 角平分線的性質(zhì)

查看答案和解析>>

同步練習(xí)冊(cè)答案