【題目】如圖,在菱形ABCD中,點(diǎn)E,FG,H分別是邊ABBC,CDDA的中點(diǎn),連接EF,FGGHHE,若EH=2EF=2,則菱形ABCD的邊長(zhǎng)為(

A. B. 2 C. 2 D. 4

【答案】A

【解析】

連接AC、BD交于O,根據(jù)菱形的性質(zhì)得到ACBD,OA=OC,OB=OD,根據(jù)三角形中位線(xiàn)定理、矩形的判定定理得到四邊形EFGH是矩形,根據(jù)勾股定理計(jì)算即可.

連接ACBD交于O,
∵四邊形ABCD是菱形,
ACBD,OA=OC,OB=OD,
∵點(diǎn)EF、GH分別是邊AB、BCCDDA的中點(diǎn),

EF=AC,EH=BD, EFAC,EHBD,

∴四邊形EFGH是平行四邊形,EH⊥EF,

∴四邊形EFGH是矩形,

EH=2EF2,
OB=2OA2

AB=.

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)直角有公共頂點(diǎn).下列結(jié)論:①;②;③若平分,則平分;④的平分線(xiàn)與的平分線(xiàn)是同一條射線(xiàn).其中結(jié)論正確的個(gè)數(shù)是( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,正方形的邊長(zhǎng)為4厘米,點(diǎn)從點(diǎn)出發(fā),經(jīng)沿正方形的邊以2厘米/秒的速度運(yùn)動(dòng);同時(shí),點(diǎn)從點(diǎn)出發(fā)以1厘米/秒的速度沿向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,的面積為平方厘米.

1)當(dāng)時(shí),的面積為__________平方厘米;

2)求的長(zhǎng)(用含的代數(shù)式表示);

3)當(dāng)點(diǎn)在線(xiàn)段上運(yùn)動(dòng),且為等腰三角形時(shí),求此時(shí)的值;

4)求之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<BC.

(1)利用尺規(guī)作圖,在BC邊上確定點(diǎn)E,使點(diǎn)E到邊AB,AD的距離相等(不寫(xiě)作法,保留作圖痕跡);

(2)若BC=8,CD=5,則CE=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料并解答問(wèn)題:在一個(gè)三角形中,如果一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍,那么這樣的三角形我們稱(chēng)為“3倍角三角形例如:一個(gè)三角形三個(gè)內(nèi)角的度數(shù)分別是,這個(gè)三角形就是一個(gè)“3倍角三角形.反之,若一個(gè)三角形是“3倍角三角形,那么這個(gè)三角形的三個(gè)內(nèi)角中一定有一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍.

1)如圖1,已知,在射線(xiàn)上取一點(diǎn),過(guò)點(diǎn)于點(diǎn).判斷是否是“3倍角三角形”,為什么?

2)在(1)的條件下,以為端點(diǎn)畫(huà)射線(xiàn),交線(xiàn)段于點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合).若“3倍角三角形”,求的度數(shù).

3)如圖2,點(diǎn)的邊上,連接,作的平分線(xiàn)交于點(diǎn),在上取一點(diǎn),使得,.若“3倍角三角形,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知E、F分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,O為BD的中點(diǎn),則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近期,我市持續(xù)出現(xiàn)霧霾天氣,給廣大市民的工作和生活造成了嚴(yán)重的影響.為此,霧霾天氣的主要成因就成為了某校環(huán)保小組調(diào)查研究的課題,他們隨機(jī)調(diào)查了部分市民,并對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制了如圖所示的不完整的統(tǒng)計(jì)圖表.請(qǐng)根據(jù)圖表中提供的信息解答下列問(wèn)題:

級(jí)別

觀(guān)點(diǎn)

頻數(shù)(人數(shù))

A

大氣氣壓低,空氣不流動(dòng)

B

地面灰塵大,空氣濕度低

C

汽車(chē)尾部排放

D

工廠(chǎng)造成污染

E

其他

調(diào)查結(jié)果扇形統(tǒng)計(jì)圖

1)填空:______,______;

2)求出扇形統(tǒng)計(jì)圖中E組所占的百分比以及扇形統(tǒng)計(jì)圖中區(qū)域D所對(duì)應(yīng)的扇形圓心角度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)學(xué)生步行到郊外旅行,七年級(jí)班學(xué)生組成前隊(duì),步行速度為4千米小時(shí),七班的學(xué)生組成后隊(duì),速度為6千米小時(shí);前隊(duì)出發(fā)1小時(shí)后,后隊(duì)才出發(fā),同時(shí)后隊(duì)派一名聯(lián)絡(luò)員騎自行車(chē)在兩隊(duì)之間不間斷地來(lái)回聯(lián)絡(luò),他騎車(chē)的速度為10千米小時(shí).

后隊(duì)追上前隊(duì)需要多長(zhǎng)時(shí)間?

后隊(duì)追上前隊(duì)的時(shí)間內(nèi),聯(lián)絡(luò)員走的路程是多少?

七年級(jí)班出發(fā)多少小時(shí)后兩隊(duì)相距2千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,∠B=90°AB=16cm,BC=12cm,P、QABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開(kāi)始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開(kāi)始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.

1)出發(fā)2秒后,求PQ的長(zhǎng).

2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘后,PQB能形成等腰三角形?

3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案