【題目】如圖,在菱形ABCD中,點(diǎn)E,F,G,H分別是邊AB,BC,CD和DA的中點(diǎn),連接EF,FG,GH和HE,若EH=2EF=2,則菱形ABCD的邊長(zhǎng)為( )
A. B. 2 C. 2 D. 4
【答案】A
【解析】
連接AC、BD交于O,根據(jù)菱形的性質(zhì)得到AC⊥BD,OA=OC,OB=OD,根據(jù)三角形中位線(xiàn)定理、矩形的判定定理得到四邊形EFGH是矩形,根據(jù)勾股定理計(jì)算即可.
連接AC、BD交于O,
∵四邊形ABCD是菱形,
∴AC⊥BD,OA=OC,OB=OD,
∵點(diǎn)E、F、G、H分別是邊AB、BC、CD和DA的中點(diǎn),
∴EF=AC,EH=BD, EF∥AC,EH∥BD,
∴四邊形EFGH是平行四邊形,EH⊥EF,
∴四邊形EFGH是矩形,
∵EH=2EF=2,
∴OB=2OA=2,
∴AB=.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)直角和有公共頂點(diǎn).下列結(jié)論:①;②;③若平分,則平分;④的平分線(xiàn)與的平分線(xiàn)是同一條射線(xiàn).其中結(jié)論正確的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,正方形的邊長(zhǎng)為4厘米,點(diǎn)從點(diǎn)出發(fā),經(jīng)沿正方形的邊以2厘米/秒的速度運(yùn)動(dòng);同時(shí),點(diǎn)從點(diǎn)出發(fā)以1厘米/秒的速度沿向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,的面積為平方厘米.
(1)當(dāng)時(shí),的面積為__________平方厘米;
(2)求的長(zhǎng)(用含的代數(shù)式表示);
(3)當(dāng)點(diǎn)在線(xiàn)段上運(yùn)動(dòng),且為等腰三角形時(shí),求此時(shí)的值;
(4)求與之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB<BC.
(1)利用尺規(guī)作圖,在BC邊上確定點(diǎn)E,使點(diǎn)E到邊AB,AD的距離相等(不寫(xiě)作法,保留作圖痕跡);
(2)若BC=8,CD=5,則CE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料并解答問(wèn)題:在一個(gè)三角形中,如果一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍,那么這樣的三角形我們稱(chēng)為“3倍角三角形”例如:一個(gè)三角形三個(gè)內(nèi)角的度數(shù)分別是,這個(gè)三角形就是一個(gè)“3倍角三角形”.反之,若一個(gè)三角形是“3倍角三角形”,那么這個(gè)三角形的三個(gè)內(nèi)角中一定有一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍.
(1)如圖1,已知,在射線(xiàn)上取一點(diǎn),過(guò)點(diǎn)作交于點(diǎn).判斷是否是“3倍角三角形”,為什么?
(2)在(1)的條件下,以為端點(diǎn)畫(huà)射線(xiàn),交線(xiàn)段于點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合).若是“3倍角三角形”,求的度數(shù).
(3)如圖2,點(diǎn)在的邊上,連接,作的平分線(xiàn)交于點(diǎn),在上取一點(diǎn),使得,.若是“3倍角三角形”,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知E、F分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,O為BD的中點(diǎn),則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結(jié)論的個(gè)數(shù)是( 。
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近期,我市持續(xù)出現(xiàn)霧霾天氣,給廣大市民的工作和生活造成了嚴(yán)重的影響.為此,“霧霾天氣的主要成因”就成為了某校環(huán)保小組調(diào)查研究的課題,他們隨機(jī)調(diào)查了部分市民,并對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制了如圖所示的不完整的統(tǒng)計(jì)圖表.請(qǐng)根據(jù)圖表中提供的信息解答下列問(wèn)題:
級(jí)別 | 觀(guān)點(diǎn) | 頻數(shù)(人數(shù)) |
A | 大氣氣壓低,空氣不流動(dòng) | |
B | 地面灰塵大,空氣濕度低 | |
C | 汽車(chē)尾部排放 | |
D | 工廠(chǎng)造成污染 | |
E | 其他 |
調(diào)查結(jié)果扇形統(tǒng)計(jì)圖
(1)填空:______,______;
(2)求出扇形統(tǒng)計(jì)圖中E組所占的百分比以及扇形統(tǒng)計(jì)圖中區(qū)域D所對(duì)應(yīng)的扇形圓心角度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)學(xué)生步行到郊外旅行,七年級(jí)班學(xué)生組成前隊(duì),步行速度為4千米小時(shí),七班的學(xué)生組成后隊(duì),速度為6千米小時(shí);前隊(duì)出發(fā)1小時(shí)后,后隊(duì)才出發(fā),同時(shí)后隊(duì)派一名聯(lián)絡(luò)員騎自行車(chē)在兩隊(duì)之間不間斷地來(lái)回聯(lián)絡(luò),他騎車(chē)的速度為10千米小時(shí).
后隊(duì)追上前隊(duì)需要多長(zhǎng)時(shí)間?
后隊(duì)追上前隊(duì)的時(shí)間內(nèi),聯(lián)絡(luò)員走的路程是多少?
七年級(jí)班出發(fā)多少小時(shí)后兩隊(duì)相距2千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開(kāi)始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開(kāi)始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求PQ的長(zhǎng).
(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com