【題目】如圖,在四邊形ABCD中,∠C=60°,∠A=30°,CD=BC.
(1)求∠B+∠D的度數(shù).
(2)連接AC,探究AD,AB,AC三者之間的數(shù)量關(guān)系,并說明理由.
(3)若BC=2,點(diǎn)E在四邊形ABCD內(nèi)部運(yùn)動(dòng),且滿足DE2=CE2+BE2,求點(diǎn)E運(yùn)動(dòng)路徑的長(zhǎng)度.
【答案】(1)∠D+∠B=270°;(2)AD2+AB2=AC2;理由見解析;(3)點(diǎn)E運(yùn)動(dòng)路徑的長(zhǎng)度是.
【解析】
(1)利用四邊形內(nèi)角和定理計(jì)算即可;
(2)如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到△QDC,連接AQ,證明∠QDA=90°,根據(jù)勾股定理可得結(jié)論;
(3)如圖中,將△BCE繞C點(diǎn)順時(shí)針旋轉(zhuǎn)60°,得到△CDF,連接EF,想辦法證明∠BEC=150°即可解決問題.
(1)在四邊形ABCD中,∠C=60°,∠A=30°,
∴∠D+∠B=360°-∠A-∠C=360°-60°-30°=270°.
(2)如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到△QDC,連接AQ,
∴∠ACQ=60°,AC=CQ,AB=QD,
∴△ACQ是等邊三角形,
∴AC=CQ=AQ,
由(1)知:∠ADC+∠B=270°,
∴∠ADC+∠CDQ=270°,
可得∠QDA=90°,
∴AD2+DQ2=AQ2,
∴AD2+AB2=AC2;
(3)將△BCE繞C點(diǎn)順時(shí)針旋轉(zhuǎn)60°,得到△CDF,連接EF,
∵CE=CF,∠ECF=60°,
∴△CEF是等邊三角形,
∴EF=CE,∠CFE=60°,
∵DE2=CE2+BE2,
∴DE2=EF2+DF2,
∴∠DFE=90°,
∴∠CFD=∠CFE+∠DFE=60°+90°=150°,
∴∠CEB=150°,
則動(dòng)點(diǎn)E在四邊形ABCD內(nèi)部運(yùn)動(dòng),滿足∠CEB=150°,以BC為邊向外作等邊△OBC,
則點(diǎn)E是以O為圓心,OB為半徑的圓周上運(yùn)動(dòng),運(yùn)動(dòng)軌跡為,
∵OB=BC=2,
則==.
點(diǎn)E運(yùn)動(dòng)路徑的長(zhǎng)度是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E是正方形內(nèi)部一點(diǎn),連接BE,CE,且∠ABE=∠BCE,點(diǎn)P是邊AB上一動(dòng)點(diǎn),連接PD,PE,則PD+PE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC交⊙O于點(diǎn)D,E是的中點(diǎn),AE與BC交于點(diǎn)F,∠C=2∠EAB.
(1)求證:AC是⊙O的切線;
(2)已知CD=4,CA=6,
①求CB的長(zhǎng);
②求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)交軸于點(diǎn)、,交軸于點(diǎn),在軸上有一點(diǎn),連接.
(1)求二次函數(shù)的表達(dá)式;
(2)若點(diǎn)為拋物線在軸負(fù)半軸上方的一個(gè)動(dòng)點(diǎn),求面積的最大值;
(3)拋物線對(duì)稱軸上是否存在點(diǎn),使為等腰三角形,若存在,請(qǐng)直接寫出所有點(diǎn)的坐標(biāo),若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在日常生活中我們經(jīng)常會(huì)使用到訂書機(jī),如圖MN是裝訂機(jī)的底座,AB是裝訂機(jī)的托板AB始終與底座平行,連接桿DE的D點(diǎn)固定,點(diǎn)E從A向B處滑動(dòng),壓柄BC繞著轉(zhuǎn)軸B旋轉(zhuǎn).已知連接桿BC的長(zhǎng)度為20cm,BD=cm,壓柄與托板的長(zhǎng)度相等.
(1)當(dāng)托板與壓柄的夾角∠ABC=30°時(shí),如圖①點(diǎn)E從A點(diǎn)滑動(dòng)了2cm,求連接桿DE的長(zhǎng)度.
(2)當(dāng)壓柄BC從(1)中的位置旋轉(zhuǎn)到與底座垂直,如圖②.求這個(gè)過程中,點(diǎn)E滑動(dòng)的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測(cè)試的成績(jī).測(cè)試規(guī)則為連續(xù)接球10個(gè),每墊球到位1個(gè)記1分.
運(yùn)動(dòng)員甲測(cè)試成績(jī)表
測(cè)試序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(jī)(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)寫出運(yùn)動(dòng)員甲測(cè)試成績(jī)的眾數(shù)為_____;運(yùn)動(dòng)員乙測(cè)試成績(jī)的中位數(shù)為_____;運(yùn)動(dòng)員丙測(cè)試成績(jī)的平均數(shù)為_____;
(2)經(jīng)計(jì)算三人成績(jī)的方差分別為S甲2=0.8、S乙2=0.4、S丙2=0.8,請(qǐng)綜合分析,在他們?nèi)酥羞x擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?為什么?
(3)甲、乙、丙三人相互之間進(jìn)行墊球練習(xí),每個(gè)人的球都等可能的傳給其他兩人,球最先從甲手中傳出,第三輪結(jié)束時(shí)球回到甲手中的概率是多少?(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)探究活動(dòng)課中,某同學(xué)有一塊矩形紙片,已知,,為射線上的一個(gè)動(dòng)點(diǎn),將沿折疊得到,若是直角三角形,則所有符合條件的點(diǎn)所對(duì)應(yīng)的的和為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,為正三角形,點(diǎn)為邊上任意一點(diǎn),以為邊作正,連接,求的值;
(2)如圖,為等腰直角三角形,,點(diǎn)為腰上任意一點(diǎn),以為斜邊作等腰直角,連接,求的值;
(3)如圖,為任意等腰三角形,點(diǎn)為腰上任意一點(diǎn),以為底邊作等腰,使,并且BC=AC,連接,寫出的值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則
①二次函數(shù)的最大值為a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com