【題目】△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.

(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點(diǎn)E,F(xiàn),求證:AE+AF=AD

(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.

【答案】(1)見解析;,理由見解析.

【解析】

(1)連接BD,證△ABD是等邊三角形,得∠ABD=BDA=DAB=60,再證△BDE≌△ADF(AAS),AF=BE,AB=AE+BE;

2)線段AE,AF,AD之間的數(shù)量關(guān)系為:,思路如下:

連接BD,模仿(1)證△BDE≌△ADF(AAS),得,所以.

∵在△ABC中,AB=AC,AD⊥BC,∠BAC=120

∴∠BAD=FAD=60

AD=AB

∴△ABD是等邊三角形

∴∠ABD=BDA=DAB=60

DEAB,DFAC

∴∠BED=DFA=90

在△BDE和△ADF中,

BED=DFA,∠EBD=FADBD=DA,

∴△BDE≌△ADF(AAS)

AF=BE

AB=AE+BE

AB=AE+AF

解:線段AE,AF,AD之間的數(shù)量關(guān)系為:,理由如下:

連接BD,如圖所示:

,,

是等邊三角形,

,,

,

,

,

中,

,

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)命題:①全等三角形的面積相等;②最小角等于50°的三角形是銳角三角形;③等腰△ABC中,D是底邊BC上一點(diǎn),E是一腰AC上的一點(diǎn),若∠BAD=60°AD=AE,則∠EDC=30°;④將多項(xiàng)式因式分解,其結(jié)果為-y(2x+1)(x-3).其中正確命題的序號(hào)為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,D、E分別為AB、AC上的點(diǎn),∠BDE、CED的平分線分別交BC于點(diǎn)FG,EGAB.若∠BGE=110°,則∠BDF的度數(shù)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一拋物線與x軸的交點(diǎn)是A(﹣2,0)、B(1,0),且經(jīng)過點(diǎn)C(2,8).
(1)求該拋物線的解析式;
(2)求該拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△AOB中,∠AOB=90°,OA=3,OB=4.將△AOB沿x軸依次以點(diǎn)A,B,O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn),分別得到圖②、圖③、…,則旋轉(zhuǎn)得到的圖⑩的直角頂點(diǎn)的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為美化校園,計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4.

1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?

2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬元,乙隊(duì)為0.25萬元,要使這次的綠化總費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角ABC中,AB=6,BAC=45°,BAC的平分線交BC于點(diǎn)D,M,N分別是ADAB上的動(dòng)點(diǎn),則BM+MN的最小值是 ( )

A. B. C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了估算河的寬度,我們可以在河對(duì)岸選定一個(gè)目標(biāo)作為點(diǎn)A,再在河的這一邊選定點(diǎn)B和C,使AB⊥BC,然后,再選點(diǎn)E,使EC⊥BC,用視線確定BC和AE的交點(diǎn)D.此時(shí)如果測(cè)得BD=120米,DC=60米,EC=50米,求兩岸間的大致距離AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是否存在整數(shù)m,使關(guān)于x的不等式1++與關(guān)于x的不等式x+1> 的解集相同?若存在,求出整數(shù)m和不等式的解集;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案